Getting Better Grades On Programming Projects

Arthur G. Werschulz
Department of Computer and Information Sciences
Fordham University
agw@dsm. fordham. edu

February 9, 2020

Many of the computer science courses at Fordham University involve computer programming assignments. These
assignments will go a long way towards helping you to internalize the ideas that the text and the lectures are trying to
transmit. As a result, your grade in these courses will either directly or indirectly be affected by how well you do on
the programming assignments.

In some (usually lower-level) classes, I grade your projects according to the following standards:

¢ documentation: 20%
e correctness: 40%, which may be further broken down as

— correctness of the algorithm: 20%

— correctness of the program: 20%
* input and output quality: 20%
e program style: 20%
In other (usually upper-level) classes, I use the grading standards
* correctness: 60%
* overall style (including documentation, I/O, and program style): 40%

The class syllabus and/or website will let you know which set of standards I’m using for any particular course.
Some of these may seem self-explanatory; some may not. After reading this document, I hope that you’ll have a
better idea of what each of these categories mean, which should help you to get better grades on these assignments.
Before we start, a couple of general comments:

1. This document is primarily intended for people writing C++ programs. However, the main principles are pretty
much language independent.

2. T highly recommend that you use the emacs text editor to create your programs. Admittedly, emacs has a
somewhat steep learning curve, but the end results are worth it. In particular, emacs has language-dependent
modes that can help with many tasks, such as automatically indenting your program code, |'| not to mention
providing a simple development environment.

It’s also worth mentioning that emacs is free software that runs on many different platforms, including Unix-like
operating systems (most importantly, Linux and MacQOS), as well as Microsoft Windows (and DOS), Android,

I'This will certainly keep you from unnecessarily losing points under the “program style” rubric.

* Programming Project #42: The Traveling Salesperson Problem

This program solves the Traveling Salesperson Problem in polynomial
time.

* Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi

ipsum nibh, tempor eu ultrices ut, mattis a tortor. Ut risus sem,
molestie at molestie ac, varius eu dolor. Donec feugiat elit vel
lacus ultrices aliquet.

* Author: Harry Q. Bovik <harry@bovik.com>

Fededd

Date: 30 February 9872

**/

Figure 1: Typical block header

and Nokia’s Maemo[?] This means that you can use emacs (along with your own customizations) pretty much
anywhere.

To aid people encountering emacs for the first time, I have gathered together a bunch of handy resources, which
may be found athttp://www.dsm. fordham.edu/ agw/resources/emacs-resources.html. Perhaps the
best way to get started is with the built-in emacs tutorial, as described on the page mentioned above.

1 Documentation

Many programmers consider documentation to be a pain. However, a program needs to be understandable to all those
who might read it. This includes both other people (the poor souls who have to maintain your code after you leave or
are assigned to other projects) and you (when you’re asked to modify the code after being away from it for six months).
So we insist that you adhere to a consistent documentation style.

1.

Your solution to a particular assignment will consist of one or more computer files. Each file should start with a
block comment, which should look something like Figure [I]

In more detail:

* The first line should give the project number and its title.

* This should be followed by a description of what the program does. For clarity’s sake, use a one-line
description, followed by a more detailed description (if necessary).

* At the end, give your name, email address, and the date that the program was completed.
If you're using the emacs editor, you can create a row of 70 asterisks by typing the keystroke® “C-u 70 *”. Also

note that you should put a blank between the asterisk that starts a line and the content of the line, which improves
readability.

Every function should be preceded by a descriptive comment. (This includes the member functions of a class.)
For the main () function, you can simply say

2emacs also runs on a bunch of other platforms that you probably haven’t heard about, such as various other Unix-like systems (e.g., BSDs,
Solaris, AIX, and HP-UX), along with OpenVMS.
3C-something means “control-something”, and M-something means “meta-something”.

http://www.dsm.fordham.edu/~agw/resources/emacs-resources.html

// read chars from cin and compose a Token
void Token_stream::get() { ... }

// put a Token back into the buffer of a Token_stream
void Token_stream: :putback(Token t) { ... }

// iteratively compute the n-th Fibonacci number
Fib_type fib(int n) { ... }

// is num a prime number?
bool is_prime(int num) { ... }

// precondition: n >= 0

// return value: base raised to the power n
// throws Illegal_exponent if n < 0

int pow(int base, int n) { ... }

// precondition: data is sorted (in increasing order)
// return value:

// if (data[i] == target) for some i in the range [0..data.size()),
// return value is i

// otherwise (i.e., target not contained in data)

// return value is -1

int binary_search(const vector<double>& data, double target) { ... }

Figure 2: Examples of function documentation. (The function bodies are compressed to save space.)

// the usual main() function
int main(Q)

{

}

The documentation of the other functions should make the following information clear to the reader:

» what the function does
* the purpose of its parameters, and

* the function’s return value, if any.
Sometimes it will be a good idea to be a bit more pedantic, giving the following information:

* the function’s preconditions and postconditions, and

* exceptions that the function throws.

See Figure [2] for some examples of function documentation.

Sometimes functions are defined in one place, but declared in another place. Why?

* If your program is contained in one source file, you might want to put all the declarations at the beginning
of the file, before the main () function. This allows somebody who’s reading the program to see main() as
soon as possible, which (in turn) allows her to see the high-level logic of the program as soon as possible.

* If your program is contained in several files, you will probably have header files (such as “foo.h”) and
implementation files (such as “foo.cc”).

You should not put the documentation in both places, since it’s pretty hard to keep them in synch with each other.
If your instructor doesn’t tell you where the documentation should go, you should choose one or the other, but
be consistent (i.e., don’t document one function at its point of declaration, but another at its point of definition).

. You should document every important variable, unless you’re 100% sure that its name unambiguously gives this
information to the reader. For example, you might be surprised to learn that

int length;

may not be sufficiently self-documenting; you might need to do something like

int length; // length of a furrow, in pixels
instead. I would not recommend the verbose name

int furrow_length_in_pixels;

simply to avoid placing a comment. But if you’re using several different lengths, you might want to use
int furrow_length; // in pixels

and if you’re using different units for the same length, you might consider

// furrow lengths

int length_pixels;

int length_microns;

Consistency and common sense should guide you here.

. Don’t document unimportant variables. The main problem here is to figure out which variables are unimportant.
For example, loop control variables are often (but not always!) unimportant, so it’s fairly likely that you can write

for (int i = 0; i < blivit.size(); i++) {

}

. You should use loop invariants to document loops.

. Do not include useless documentation. In particular, I don’t want to see code translated into English, such as

// add a to b, giving c
c=a+ b;

. Do not include incorrect documentation, such as

// add a to b, giving c
a=>b+ c;

. Finally, note that documentation is a form of communication. One thing that it communicates is your level of
professionalism. Thus, you will lose points for misspellings and for ungrammatcial usage.

2 Correctness

Your program needs to be correct. At the bare minimum, it should produce the correct output for any sample input
data sets that I give you. Failure to check your program against any and all such data sets will cause you to lose points.

The odds are pretty good that this is the extent to which I’ll check your programs; however, I reserve the right to
run your programs against other data sets.

I will assess the correctness of both the algorithm and the program, each having an equal weight. Roughly speaking,
correctness of the algorithm will mean that the general idea underlying your program is correct, whereas correctness
of the program will mean that all the details are correct.

If you find that you can only implement (say) 80% of the program features, don’t despair. I am quite happy to give
partial credit. Please don’t fall into the trap of spending hours of time working on that final 20%, the end result being
that you fall behind in your work on the other assignments.

A warning: Correctness only counts for a portion (40% or 60%, depending) of your grade. However, I reserve the
right to give a zero to a program that does not (at least partially) solve the problem described in the project handout.
In other words, you can’t turn in a “Hello, world!” program and expect to get a 40% (or 60%). By the way, I will often
give you a preliminary version of a program (perhaps a “stub version”) that you are suppose to extend in some way or
another; if you simply submit this original version, even with beautiful documentation and style, you can expect to get
a Zero.

Having said all this, let me give you one final word here: relax[f] Most people tend to get a near-perfect score on
the correctness portion of their programming assignments.

3 Input and output quality

It should be easy for a user to submit input to your program; it should be easy for her to read the results that your
program produces.
I will often provide you with an input and/or output format, as follows:

* This may appear in the project handout, under the rubric of “here is a sample run of the program”.

* I might also make a executable version of the program available to you (say, in the project’s share directory), in
which case you are highly encouraged to run my version of the program, to see the 1/0 behavior.

(I might give you both.) Should this be the case, one of two situations will occur:

1. Your program will exactly follow my input/output format. In that case, you’ll get a perfect score under this
section.

2. Your program’s input/output format will differ from mine. Should this be the case, you’ll need to convince me
that your format is at least as good as mine if you want a perfect score under 1/0. You probably won’t be too
surprised to learn that I’'m not easily convinced.

So you can either bet on a sure thing or take your chances. It’s your call.

4 Program style

In 1918, William Strunk and E. B. White wrote The Elements of Style, which is an invaluable guide to clear writingE] In
1974 [Brian Kernighan wrote The Elements of Programming Style, which may be thought of as a “Strunk and White”
for programmers. I won’t attempt to give an exhaustive list of rules for programming style in this short document, but
here are some points that you should keep in mind. The whole point of these rules is that your programs should be easy

4If you want two final words, fine: “Don’t panic.”

SIf you weren’t been forced to read same when you took ENGL 1100 (or its equivalent), drop everything right now, get a copy, and study it
intently. It will make you a better writer, and it might just even make you a better programmer.

6P. J. Kernighan was a co-author of the 1978 edition.

automatically indent buffer upon save (but ask first)
steals ideas from

; Andreas Politz <politza@fh-trier.de>

Eric James Michael Ritz <Eric@cybersprocket.com>

(defun indent-buffer-ask()

(when (y-or-n-p "Indent buffer before saving? ")

(indent-region (point-min) (point-max))))

(defun indent-buffer-no-ask()
(indent-region (point-min) (point-max)))

(setq c++-mode-hook

))

’(lambda O
(c-set-style "cc-mode")
(define-key c++-mode-map "\C-c\C-c" ’compile)
(define-key c++-mode-map "\C-c\C-e" ’next-error)
(add-hook ’before-save-hook ’indent-buffer-ask nil t)
(add-hook ’before-save-hook ’indent-buffer-no-ask nil t)

Figure 3: Automatic indentation when saving in emacs.

to read, which will make them easier to understand and debug, which (in turn) will improve the odds of their being
both correct and maintainable.

Note that if you're reading this document in conjunction with a programming course (say, CISC 1600/1610 or

CISC 2000/2010), your text might have a discussion of programming style (e.g., Section 5.9 in Bjarne Stroustrup’s
Programming: Principles and Pracice Using C++); think of this section as being an extension to that part of your text.

1. Break your code into small functions, each expressing a logical action.

2. Avoid complicated code sequences.

3. Use library facilities rather than your own code when you can.

4. Use a consistent indentation style. This can be done automatically if you’re using the emacs editor, as follows.

One way to for an emacs user to ensure that her code is always properly indented would be for her to get into the
habit of always auto-indenting each program file before you save it. You do this by issuing the commands C-x h
(which marks the entire buffer as being the emacs region) and M-C-\ (which indents the region).

If you’d rather not remember this set of keystrokes every time you save your work and you’re a C++ programmer,
add the code found in Figure 3] to your ~/.emacs file[]] (This is a file in your home directory named .emacs,
which emacs consults for customization information whenever emacs starts up. It is written in the Emacs Lisp
programming language.) Uncomment whichever add-hook gives you the auto-indenting behavior you want;
note that the semicolon is the comment character in Emacs Lisp. Please note that changing your ~/ . emacs file
changes the behavior of emacs for future sessions, and not the current session. Instead of going through the
steps necessary to make it work on the current emacs session, it’s easier to simply quit the current emacs session
and fire up a new one.

Now do yourself a favor and look at the overall indentation of the program; if the indentation looks incorrect,
you’re probably missing an important character (such as brace or a semicolon) someplace.

7A variant of this code may already be there, towards the end of your ~/.emacs file. This will save you a lot of error-prone typing. If it’s not
there, you should be able to do a cut-and-paste from this document into your ~/ . emacs file.

5. Don’t use overly-wide indentation. Usually three or four spaces per level is about right. Eight spaces (the default
provided by emacs) is definitely far too many, since it causes your program to eat up horizontal space. If you're
using emacs, you can adjust this by putting

(setq c-basic-offset 4)

in your ~/.emacs file. Play around with various values to see what you like best; maybe you’d like an even
smaller value (2 or 3).

6. Use a consistent bracing style. In other words, be consistent where you put opening braces. I like to distinguish
between two kinds of braces:

* The opening brace for a block that defines a class, struct, or function body should appear on its own
line, e.g.,

int foo (int bar)

{

}

* The opening brace for a block that appears as the body of a control statement (if, while, try, etc.) should
appear on the same line as the header for the control statement, e.g.,

while (baz > 0) {
bar = quux;
snap = crackle;

}

Some people like to have all opening braces appear on their own lines. If you really want to do this, please make
sure that the braces for control statements don’t get indented. In other words,

while (baz > 0)

{
bar = quux;
snap = crackle;

}

is okay, but

while (baz > 0)
{
bar = quux;
snap = crackle;

}

eats up too much horizontal space; it’s even worse when combined with overly-wide indentation:

while (baz > 0)
{
bar = quux;
snap = crackle;

If you imagine a similarly-indented if-statement within such a while-loop, and you’ll see what is sometimes
referred to as the “accordion effect”.

You will lose points on style if your code looks like either of the previous two examples.

If you really insist on putting the opening brace of a control structure on its own line, you’ll find that the default
indentation that emacs produces is exactly the indentation given in the last two examples. The good news is that
this is fixable ®] The fix? Add the line

(c-set-offset ’substatement-open 0)

immediately after the line ’ (1ambda () in the c++-mode-hook definition found in the ~/ . emacs file,

7. Identifiers are used to name things (variables, constants, classes, functions, etc.). Here are some thoughts
regarding identifiers:

¢ Use mnemonic identifier names where appropriate. In other words, the name of an identifier should be
almost self-documenting (but see the earlier discussion under [documentation). However, don’t make this
into a fetish. As arule of thumb, the more “global” an identifier is, the more important it is for that identifier
to have a good name. Hence the names of functions, classes, and class members should be carefully chosen.
At the other extreme, the scope of a loop control variable tends to be fairly small. If your loop control
variable is of integer type (as is often the case), so you can get by with names such as i, j, ..., n for same[%]
In other words, don’t use loop_control_variable for the name of a loop control variable; use (e.g.) i
instead. Moreover, if you have an embedded loop, this would allow you to use j for the inner loop control
variable, e.g.,

for (int i = 0; i < num_rows; i++) {
// stuff
for (int j = 0; j < num_columns; j++) {
// more stuff
}
// still more stuff
}

e This brings us to the issue of identifier names that are compound nouns. There are two schools of
thought here. To separate the words in such an identifier, you can either use “camel casing” (e.g.,
getUserName()) or you can use underscores (e.g., get_user_name()). The choice of which to use is a
“religious argument”. My general policy when teaching a course is to follow the textbook’s choice (e.g.,
underscores with Stroustrup’s Programmming: Principles and Practice Using C++ and camel casing with
Carrano’s Walls and Mirrors. In any case, be consistent, i.e., don’t use both styles within a given program.

* The name of a datatype should start with a capital letter; the name of anything else should start with a
lower-case letter. For instance:

class Employee { ... };

Employee emp;

This will help the reader to know whether a given identifier names a datatype or something else. (Note that
this is not quite a standard; in particular, the Standard Template Library doesn’t follow this rule.)

8The behavior of virtually anything in emacs can be reconfigured.
9These names are fairly conventional for loop control variables. If you would like a mnemonic device to help you remember them, simply recall
that i and n are the first two letters of the word “integer” (or, if you prefer, the C++ reserved word int.

8.

10.

11.

Horizontal spacing can either add to or detract from your program’s readability.

Here’s where I like to use a single horizontal space (I'm explicity indicating such spaces as ’..’):

* With includes, e.g., “#include_<iostream>".
o After for,while, if, etc,, e.g., “while (i_<.0)” or “if. (x_>.0)".
¢ On either side of an assignment operator, e.g., “x.=_a.-_b” or “x += 2”.

* After a comma operator or a semicolon, e.g., “enum_Color_=_.{_RED, BLUE, _GREEN};” or
“for_(int.i_=.0; i <. foo.size(Q); i++).{".

* For arithmetic (or logical) expressions, I like to follow mathematical typesetting rules that go back hundreds
of years, and put a single horizontal space

— on either side of an additive operator, e.g., “a_+.b” or “a.| | _b”, and
— on either side of a relational operator, e.g., “a_==_b" or “a_<.b”.

I generally don’t use horizontal spaces on either side of multiplicative operators. So the algebraic expression
“a + bc” would be written as “a_+._b*c”.

Vertical spacing can also affect your program’s readability. You should use a blank line to separate the chunks
of your program. For example:

o After a file’s initial block comment.
¢ Between the #include section and the function declaration section.
* Before the (comment that precedes the) definition of any function.

* Between major sections of a function.
By the way, it wouldn’t hurt to put a descriptive comment before each of these sections.

Most students quickly learn that expressions should not be under-parenthesized. As a result, they often tend to
err in the opposite direction, writing expressions such as “C(((a + ((b))*c)))”, which are nearly unreadable.

It’s probably okay to assume that everybody knows the following rules (which are based on the corresponding
rules in algebra):

* Multiplicative operations have a higher priority than additive operations, which means that you should use
“a/b + c”instead of “(a/b) + c”.

* Relational operations have a lower priority than either arithmetic operations or logical operations, which
means that you should use “b*b < 4*a*c” rather than “(b*b) < (4*a*c)”.

Of course, when in doubt, use parentheses!

Avoid “magic numbers,” i.e., explicit numbers that appear in the code with no apparent explanation. (Sometimes
people call these “manifest constants”.) For example, consider the statement

cost = price*1.07;
What’s the purpose of the 1.07? It would be better to use

const double tax_rate = 0.07;

cost = price*(l1 + tax_rate);

Similarly, in the statement
x_coord = length*sin(1.5708*theta);
the role of 1.5708 is a mystery. If you use

const double pi = 3.1416;
const double pi_by_2 = pi/2;

x_coord = length*sin(pi_by_2*theta);
things will be clearer. In all honesty, I probably would do eliminate pi_by_2 and simply use

const double pi = 3.1416;

x_coord = length*sin(pi*theta/2);

As with all things, this can be overdone. Certain numbers (such as 0, 1, 2) can be used as is. It may take a bit
of experience to learn the when you should use manifest constants (such as 0, 1, 2) and when you should use
named constants (such as tax_rate or pi).

One last note: Some folks like to use ALL_UPPER_CASE to define consts, and some don’t. (There are historical
reasons for why some people do this.) My advice is to follow the standard used in your text. If your text has no
particular standard, I don’t care whether you use upper case or not, as long as you’re consistent.

10

	Documentation
	Correctness
	Input and output quality
	Program style

