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Abstract

A method is derived to fit a set of multidimensional experimental data points having
a priori uncertainties and possibly also covariances in all coordinates to a straight line,
plane, or hyperplane of any dimensionality less than the number of coordinates. The
least-squares formulation used is that of Deming, which treats all coordinates on an
equal basis. Experimentalists needing to fit a linear model to data of this kind have
usually performed multiple independent fits in subspaces of the full data space such
that each fit has only one dependent coordinate. That procedure does not guarantee
mutual consistency of the fits. The present method can be thought of as providing
multiple such hyperplane fits in a single simultaneous and therefore consistent solution.
An application to the analysis of xenon isotopes in meteorites is provided as an example.

This paper is an expanded version, with detailed derivations, of a manuscript with
the same title submitted to Applied Numerical Mathematics.

1 Introduction

The problem posed is to fit a set of multidimensional heteroscedastic data points, i.e. data
having individual a priori given uncertainties and possibly also covariances in all coordinates,
to a hyperplane (which in two or three dimensions would be a straight line or a plane). This
problem arises naturally, for instance, in analysis of noble-gas isotopes, where a measured
isotopic composition is a linear combination of contributions from a number of reservoirs
of fixed composition. Typically the quantity of each isotope (absolute abundance or ratio
with respect to one chosen reference isotope) is associated with an uncertainty derived from
internal statistics of the mass spectrometric measurement. Other experimental domains also
yield data of this type, e.g. [5]. For such data, the standard method of weighted least-squares
(WLS) analysis, which assumes that the independent coordinates are error-free, cannot be
applied. Deming [3] provided the correct formulation of the least-squares solution of this
problem. The resulting equations to be solved are non-linear. Due to the limited computing
resources available at the time, Deming did not develop an exact solution to the problem.
York [11, 12] was the first to provide an iterative method for solving the problem in the 2-
dimensional case. Williamson [10] provided a simpler and more reliable method, also for the
2D straight-line case. Kent et al. [6] improved on these results by generalizing the method
to any number of coordinates and using Newton-Raphson rather than the slower fixed-point
iteration method. However, their solution is still restricted to the case of a single dependent
coordinate, i.e. a hyperplane of dimensionality one less than the number of coordinates. (As
will be shown, in contrast to conventional WLS, here even in the absence of covariances it
is not possible to decompose a problem with multiple dependent coordinates into a set of
independent problems each having just a single dependent coordinate.) For instance, their
method cannot solve correctly for a straight line in three or more dimensions. They also
provided only an approximate covariance matrix for the set of solution parameters.
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Here the general problem of fitting data to a hyperplane with any number of dependent
coordinates, i.e. of any dimensionality less than the number of coordinates, is solved, and an
error propagation formula is supplied that is exact to first order in the relative variances.

An important special case is that in which the hyperplane is constrained to pass through
the origin. The notation used here is able to incorporate both the constrained and uncon-
strained cases in a single derivation. This approach also allows the method to accommodate
data sets in which some of the coordinates may be exact.

1.1 Notation

In order to define the representation of the fitted hyperplane, the coordinates of the data
space are partitioned into two disjoint sets, regarded respectively as the independent co-
ordinates (denoted by column vector x) and the dependent coordinates (vector y). This
partitioning is arbitrary, since the Deming least-squares formulation treats all coordinates
equivalently. The fitted hyperplane as a geometrical object does not depend on how the
partitioning is done, although its representation does. In any case, the coordinates need to
be partitioned in some way so that the representation of the hyperplane is non-redundant,
that is, it has only as many parameters as degrees of freedom in the hyperplane. Then the
equation of the hyperplane to be fitted can be written

y = a0 + Ax (1)

where a0 is a vector and A is a matrix, which are to be determined. For the constrained
case in which the hyperplane must pass through the origin, a0 ≡ 0. The constrained
and unconstrained cases can be treated together by adopting the convention that for the
unconstrained case, A is augmented with an initial column containing a0, and the vector x
is correspondingly augmented with a fixed initial component equal to 1. We will place a hat
on these and related quantities to signify that if dealing with the unconstrained case, they
are augmented, while if it is the constrained case, they are the same as without the hat.
Thus:

Unconstrained Constrained

Â =
[

a0 A
]

and x̂ =
[

1
x

]
Â = A and x̂ = x.

(2)

The difference between the two cases then amounts to indexing columns of Â and elements
of x̂ from 0 for the unconstrained case or from 1 for the constrained case. Then (1) reduces
to y = Âx̂. Denoting the number of elements in x̂ by nx̂ and the number of elements in y by
ny, the size of Â is ny × nx̂. (For the constrained case nx̂ = nx, the number of independent
coordinates, while for the unconstrained case nx̂ = nx + 1.)

It will be convenient to define quantities in which independent and dependent coordinates
are combined. Using “blackboard bold” for this purpose,

A =
[

Â −Iny

]
and x =

[
x̂
y

]
(3)

so that the hyperplane equation is simply Ax = 0. Also, it is assumed that the data points
xi are independent and normally distributed with known respective covariance matrices

�i =
[

Σx̂i ΣT
x̂iyi

Σx̂iyi Σyi

]
(4)

where i indexes over the set of measured data points.
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1.2 Allowance for exact and inexact data

If some components of the xi are exact, then �i will be singular due to the presence of rows
and columns that are exactly 0. (This will always be the case for the unconstrained fit,
where Σx̂i has an initial row and column of zeros and Σx̂iyi has an initial column of zeros,
due to the fixed initial 1 in x̂i.) In the least-squares solution below, it is necessary at first
to work with just the inexact parts of xi and the non-singular portion of �i. Partition x̂i

and yi as

x̂i =
[

x̌i

x̃i

]
and yi =

[
ỹi

y̌i

]
(5)

where the check denotes exact coordinates and the tilde denotes the coordinates with nonzero
uncertainties. They are arranged so the inexact data are together in the middle of xi, but
this is not essential; it allows a compact definition of an “extraction” matrix

E =
[

0 Iñ 0
]

(6)

where ñ is the number of components in x̃i and ỹi, so that the portion of xi with uncertainties
is

Exi =
[

x̃i

ỹi

]
.= x̃i. (7)

Other arrangements of the exact and inexact data can be handled by permuting the columns
of E to match; all the results below involving E are unchanged if this is done. Then the non-
singular portion of the covariance matrix, that is, the portion that applies only to x̃i and
ỹi, is

�̃i = E�i E
T. (8)

2 Least-squares solution

2.1 Deming least-squares criterion

Deming’s [3] formulation of the least-squares criterion for a fit to data with uncertainties
in the independent as well as dependent coordinates begins by introducing “adjusted” data
points �i, which can be regarded as the means of the respective ideal populations from which
the xi are drawn, where again i indexes over the set of measurements. By hypothesis the
adjusted values obey the equation of the hyperplane exactly:

A�i = 0, ∀i. (9)

Then, on the assumption of normally distributed errors, the log likelihood of the set of
measurements is (suppressing the normalization constant)

L = − 1
2

∑
i

(x̃i − �̃i)T�̃−1
i (x̃i − �̃i)

= − 1
2

∑
i

(xi − �i)TET �̃−1
i E (xi − �i). (10)

This quantity is to be maximized subject to the constraint (9). Note that the components of
�i that are eliminated by E are defined to be equal to the corresponding (exact) components
of xi, and so they do not contribute to L, nor do they enter into the maximization.
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First L is maximized with respect to the �i while holding A fixed. Take the inner product
of (9) for each i with a vector λi of Lagrange multipliers and add to (10), then differentiate
the result with respect to the �i:

(xi − �i)TET �̃−1
i E δ�i + λT

i A δ�i = 0, ∀i. (11)

Since the components of δ�i corresponding to the exact components of xi are 0 by definition,
A δ�i = AETE δ�i = AET δ�̃i so (11) can be written in terms of only the variable components
of xi and �i as

(x̃i − �̃i)T �̃−1
i δ�̃i + λT

i AE
T δ�̃i = 0, ∀i. (12)

Equating coefficients of δ�̃i to 0 yields

�̃i = x̃i + �̃i EA
Tλi, ∀i. (13)

Multiplication on the left by ET expands a vector like x̃i to full size while padding with zeros
at the positions of exact components. Therefore

�i = xi + ET �̃i EA
Tλi = xi + �i A

Tλi, ∀i (14)

for all the components of �i. Inserting this result into the constraint equation (9) and solving,

λi = −
(
A�iA

T
)−1

A xi, ∀i. (15)

Since A�iA
T = AET �̃i EA

T, and �̃i is non-singular, it follows that the inverse of A�iA
T exists

provided rank(AET) = ny. This requires ñ ≥ ny, a condition that is normally satisfied for
the problems addressed here: for instance it is sufficient to require that all of the dependent
variables have uncertainties.

It is worth noting that the terms A�iA
T are simply the inverse of Deming’s weights (see

e.g. p. 179 of [3]). Thus define
W−1

i
.= A�iA

T. (16)

Defining also the conventional residuals ri
.= Aixi gives λi = −Wiri. Then the Deming

residuals are given by
xi − �i = �iA

TWiri, ∀i, (17)

which allows (10) to be rewritten compactly as

Lp = − 1
2

∑
i

rT
i Wiri. (18)

The subscript p signifies that this is now the profile log likelihood, i.e. a function only
of A. This has the same form as for conventional WLS, but differs from it in that the
weights Wi are not fixed a priori, but depend on A. Note that if the Wi are diagonal,
(18) can be decomposed into a set of sums for each dependent coordinate that can be
maximized independently. But the Wi are not diagonal unless the independent coordinates
are exact (Σxi = 0) and the dependent coordinates are uncorrelated (Σyi diagonal), i.e. for
conventional WLS with uncorrelated data.

2.2 Quasi-normal equations

Now Lp is maximized with respect to A. Since part of A is fixed (the identity matrix), it
needs to be unpacked to extract the unknown portion Â. This gives

ri = Âx̂i − yi (19)
W−1

i = ÂΣx̂iÂ
T − ÂΣT

x̂iyi
−Σx̂iyiÂ

T + Σyi . (20)
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In fact the hats can be removed from all quantities in (20) because for the unconstrained
case, the initial column of Â (the vector a0 defined in section 1.1) does not contribute to
W−1

i due to the zeros in Σx̂i and Σx̂iyi . The hats are left on for now to maintain uniform
treatment in the rest of the derivation. Similarly unpack

�i =
[

µ̂i

ηi

]
(21)

with µ̂i having nx̂ components and ηi having ny components. Minimizing (18) with respect
to Â,

δLp = −
∑

i

[
rT

i Wi δri + 1
2rT

i δWi ri

]
= 0. (22)

From (19) and (20)

δri = δÂ x̂i (23)

δWi = −Wi δW−1
i Wi = −Wi

[
δÂ Ξ̂T

i + Ξ̂i δÂT
]
Wi (24)

where Ξ̂i
.= ÂΣx̂i

−Σx̂iyi
. Inserting these expressions into (22) and using

µ̂i = x̂i − Ξ̂T
i Wiri (25)

from unpacking (17), one obtains

δLp = −
∑

i

rT
i Wi δÂ µ̂i = 0. (26)

Equating the coefficient of each element of δÂ to 0 yields
∑

i Wi riµ̂
T
i = 0 or∑

i

Wi Â x̂iµ̂
T
i =

∑
i

Wi yiµ̂
T
i . (27)

This system closely resembles the normal equations of the conventional WLS problem, but
using the Deming weights Wi and replacing one instance of x̂i on each side by the adjusted
value µ̂i. In fact, if only the dependent variables have uncertainties, i.e. Σx̂i = 0 and
Σx̂iyi = 0, then W−1

i = Σyi and µ̂i = x̂i, ∀i. Then (27) becomes the conventional WLS
normal equations. However, in the general case these equations are not normal, though they
will be close to normal if the Deming residuals are small, so I will call them quasi-normal.

It is worth digressing briefly to consider whether it is possible to avoid solving the quasi-
normal equations, which like their conventional cousins tend to be ill-conditioned. The
preferred method of solving the conventional WLS problem is to rewrite (18) as a norm of
residuals:

−2Lp =
∑

i

(Âx̂i − yi)TWi(Âx̂i − yi) → ‖ÂX−Y‖22 (28)

where X and Y are matrices whose columns are the data vectors x̂i and yi respectively,
scaled by the square roots of the weights. This norm is minimized by A = YX+ where X+

is the generalized inverse of X. (See, for instance Golub and Van Loan [4]. Their proof is
for ny = 1 but it generalizes readily to ny ≥ 1.) However, in the present case besides the
fact that the Wi are matrices and so cannot in general be used to scale the x̂i, the approach
fails because the Wi are not fixed constants, but depend on the solution Â. Even if it
were possible to rewrite Lp in terms of a norm as in (28), minimizing this norm would be
equivalent to solving the conventional (not quasi) normal equations with the Wi evaluated
at the solution. It would therefore not give the Deming least-squares solution.
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2.3 Solution of the quasi-normal equations

2.3.1 Fixed-point iteration

The quasi-normal equations (27) are non-linear, and do not have a closed-form solution.
Therefore an iterative solution is necessary. Although fixed-point iteration has only linear
convergence, it is worth examining because as formulated below it is very stable and tends
to reach a good approximate solution quickly. Thus it can provide a good starting point for
the quadratically convergent Newton-Raphson iteration which is derived later.

Noting that the dependence of µ̂i on Â is weak, and that (27) is not very sensitive to
changes in the Wi with Â (proportional changes would cancel out altogether), a fixed-point
iteration can be based on treating the µ̂i and Wi as constants. The system (27) can be
vectorized as (∑

i

µ̂ix̂
T
i ⊗Wi

)
vec Â =

∑
i

µ̂i ⊗Wiyi (29)

In this notation the vectorization operator vec yields a column vector formed by concatenat-
ing successive columns of the matrix. The symbol ⊗ denotes the Kronecker product. See the
Appendix for a summary of the relevant properties of the Kronecker product. The iteration
proceeds by evaluating the two sums using the current guess for Â, solving for the new Â,
and repeating. Each iteration requires solving an unsymmetric system of nx̂ny equations for
the nx̂ny elements of Â. Provided the Σyi

are not singular, an initial guess of Â = 0 works
well: if the �i are diagonal then with this starting point the first iteration gives the result
of using WLS with weights of Σ−1

yi
, which should be close to the Deming fit. Commonly

the accuracy of the solution improves by more than one decimal digit per iteration, so it
is usually worth doing one or two more iterations to provide the Newton-Raphson method
with a very good starting point from which it can converge to machine precision in just a
few iterations.

Since the Deming weights are symmetric positive definite, they can be Cholesky factored
as Wi = GiGT

i so the quasi-normal matrix in parentheses in (29) can be factored as
∑

i(µ̂i⊗
Gi)(x̂i ⊗Gi)T. Since the adjusted points µ̂i should be close to the x̂i, this shows that in
practice this matrix will usually be positive definite (provided there are sufficient independent
data points for it to be of full rank) but for badly scattered data, large uncertainties and
covariances, or inappropriate guesses for Â this cannot be guaranteed. Therefore a general-
matrix solver should be used to solve (29).

2.3.2 Newton-Raphson iteration

Defining

F̂(Â) .=
∑

i

Wi

(
Âx̂i − yi

)
µ̂T

i (30)

then by (27) the solution to the least-squares problem is given by F̂(Â) = 0. This equation
can be solved using the multivariate Newton-Raphson method. (See, e.g. Baldick [1]. For
ny = 1 the resulting iteration is the same as the method of Kent et al. [6].) This method
requires evaluating the Jacobian matrix of F̂ with respect to Â.

Since various conventions for matrix derivatives are found in the literature, it is necessary
to define the notation used here. For a vector f that is a function of a vector x, df/ dx is
defined to be a matrix with dfi/ dxj in the i-th row and j-th column. In this convention,
the gradient of a scalar is a row vector. Then for a matrix F that is a function of a matrix
X, dF/ dX .= dvecF/ d vecX. (Writing a matrix derivative as a ratio of differentials is
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deprecated by some authors, e.g. [8], for good reasons, but this notation is retained here
because it makes many of the following expressions more readable as analogs of their scalar
counterparts.)

With this definition of the matrix derivative, we solve for the Jacobian matrix Ĵ .=
∂F̂/∂Â. Details are given in the Appendix, Sec. 8.1. The result is

Ĵ =
∑

i

{
µ̂iµ̂

T
i ⊗Wi −Σx̂i ⊗Wirir

T
i Wi + Ξ̂T

i Wi Ξ̂i ⊗Wirir
T
i Wi

−Wi Ξ̂i ./ Wiriµ̂
T
i −Wiriµ̂

T
i ./ Wi Ξ̂i

}
. (31)

Because (A⊗B)T = AT⊗BT and (A ./ B)T = B ./ A, Ĵ in (31) is manifestly symmetric.
It can also be shown to be positive definite, provided the residuals are small compared to
the data values. The proof is as follows. Let Γ̂i denote the Cholesky factorization of Σx̂i ,
i.e. Γ̂iΓ̂T

i = Σx̂i , and define

M̂i
.= µ̂i ⊗ Iny (32)

Êi
.= Wiri ./ Ξ̂i (33)

Ŝi
.= Γ̂i ⊗Wiri (34)

(The notation reflects the identification of M̂i as a kind of inflated µ̂i, and Êi as a relative
of ε̂i

.= x̂i − µ̂i = Ξ̂T
i Wiri. In the ny = 1 case in fact M̂i = µ̂i and Êi = ε̂i.) Then

Ĵ =
∑

i

{
M̂iWiM̂T

i + ÊiWiÊT
i − M̂iWiÊT

i − ÊiWiM̂T
i − ŜiŜT

i

}
=

∑
i

{
(M̂i − Êi)GiGT

i (M̂i − Êi)T − ŜiŜT
i

}
(35)

where Gi is the Cholesky factorization of Wi as in Sec. 2.3.1. Since the M̂i are of the order
of magnitude of the data, while Êi and Ŝi are proportional to the residuals, the terms in the
sum will all be positive provided the residuals are small relative to the data.

Thus Ĵ may not be positive definite if Â may have any value. At convergence, however,
where Â minimizes Lp, Ĵ must be positive definite since it is the Hessian matrix of Lp with
respect to Â.

3 Error analysis

3.1 Goodness of fit

Having solved for Â, the goodness of fit can be assessed. The assumption of normally
distributed errors implies (as shown by Deming [3]) that the sum in (10) gives the variance
of the fit, which approximates χ2. This variance is more conveniently calculated using the
equivalent sum in (18):

χ2 ≈ −2Lp =
∑

i

rT
i Wiri (36)

If the data fit the assumed form of a hyperplane, then χ2 should be approximately equal to
the number of degrees of freedom, ν = mny − nx̂ny = (m− nx̂)ny, where m is the number
of data points. This number is derived by considering that each point contributes only ny

degrees of freedom, one for each dependent coordinate, since the location of the independent
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coordinates is arbitrary. Then one subtracts the number of parameters in Â. The reduced
χ2, χ2

ν
.= χ2/ν, should therefore be approximately equal to 1. If χ2

ν is significantly larger than
1, then either the variances and covariances of the data points have been underestimated
a priori, or else the data do not fit the model well but scatter off the hyperplane. The
latter explanation could be due to the data requiring a higher-dimensionality hyperplane
than assumed (e.g. in the context of isotopic ratios, if the samples are mixtures of a larger
number of reservoirs than assumed), or due to a failure of the linear form (e.g. data that
should be fit to a nonlinear function). If χ2

ν is significantly smaller than 1, then either the
variances and covariances of the data points have been overestimated, or the data points
actually fit a lower-dimensionality hyperplane, so that the unneeded degrees of freedom allow
a specious improvement in the closeness of the data to the hyperplane.

3.2 Covariance matrix of Â

For the conventional WLS case, the Gauss-Markov theorem implies that the covariance
matrix of the elements of Â is given by the inverse of the Hessian matrix of Lp with respect
to Â. This matrix is the same as Ĵ, the Jacobian matrix of F̂ as calculated above, so this
suggests

ΣÂ ≈ Ĵ−1. (37)

This is an nx̂ny × nx̂ny matrix whose i, j element is cov(ai, aj) where a = vec Â. This
expression for ΣÂ is convenient, since the Ĵ matrix will already have been computed and
factored for back-solution if the Newton-Raphson iterating method is used. (In fact, Kent et
al. [6] stop here in their error analysis.) However, the Gauss-Markov theorem assumes that
the data are homoscedastic and that the independent variables are non-stochastic. In the
WLS problem when the weights are scalars, a heteroscedastic data set can be converted to
homoscedastic by scaling the data, but this cannot be done if the weights are non-diagonal
matrices (ny > 1). Besides that, the problem being addressed here assumes data with
stochastic dependent variables. Therefore, as indicated, (37) holds only approximately in
this case.

A more accurate estimate of ΣÂ can be found by propagating the covariances of the
data through the functional dependence of Â on the data points. On very mild assumptions
about the distribution of the data errors, one obtains the well-known quadrature formula
(see, e.g. Bevington [2]), which is accurate to first order in the variances:

ΣÂ =
∑

i

dÂ
dxi

�i

(
dÂ
dxi

)T

. (38)

Since Â is implicitly defined in terms of the xi via F̂(Â) = 0 with F̂ as in (30), dÂ/ dxi is
obtained by implicit differentiation and use of the chain rule:

dF̂
dxi

=
∂F̂
∂xi

+
∂F̂

∂Â

dÂ
dxi

=
∂F̂
∂xi

+ Ĵ
dÂ
dxi

= 0 ⇒ dÂ
dxi

= −Ĵ−1 ∂F̂
∂xi

. (39)

This gives

ΣÂ = Ĵ−1 Q̂ Ĵ−1 where Q̂ .=
∑

i

∂F̂
∂xi

�i

(
∂F̂
∂xi

)T

. (40)

In practice, Ĵ−1 does not need to be computed; instead (40) is written as ĴΣÂĴ = Q̂ which
is solved by factoring Ĵ and performing two back-solutions. The calculation of Q̂ is given in
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the Appendix, Sec. 8.2.

Q̂ =
∑

i

{
µ̂iµ̂

T
i ⊗Wi + Σx̂i ⊗Wirir

T
i Wi − Ξ̂i

TWi Ξ̂i ⊗Wirir
T
i Wi

}
. (41)

Conveniently, each of the terms in Q̂ also appears in Ĵ, so little additional work needs to be
done to compute it. Comparing (41) with (31), it is seen that Q̂ has the same leading term
as Ĵ, but that it lacks the two column-wise outer product terms present in Ĵ, and differs in
sign with respect to the other two terms. The terms which differ are of first or second order
in the residuals, so that by neglecting the residuals one obtains Ĵ−1Q̂Ĵ−1 ≈ Ĵ−1, recovering
(37) and showing that it is only an approximation.

Note that by (40), Q̂ is always positive definite, and therefore so is ΣÂ, as required for
a covariance matrix.

If the value of χ2
ν calculated using (36) departs significantly from unity, and there is

reason to believe that this is due to systematic over- or underestimation of the uncertainties
of the data rather than a failure of the assumed linear model, then the covariance matrix
ΣÂ can be multiplied by the calculated χ2

ν , which is equivalent to multiplying all the data
covariances by this factor. The same procedure should be used to adjust ΣÂ if the �i of the
data points are only known up to a global multiplicative constant, e.g. when the data are
assumed to have equal but unknown uncertainties in all dimensions.

4 Reduced-size system for unconstrained case

When solving the unconstrained problem, one can take advantage of the fact that the con-
stant term a0 can be solved for in terms of the rest of Â. Solving for it separately reduces
the size of the linear system to be solved on each iteration. There is also often a significant
reduction in the ill-conditioning of the linear system because the recasting of the equations
is roughly (or for ny = 1, precisely) equivalent to shifting the origin of coordinates to the
centroid of the data. For example, in the eight-dimensional fit in the example of Sec. 5, the
size of the Jacobian matrix is reduced from 18 × 18 to 12 × 12 and its 2-norm condition is
reduced by a factor of ∼ 30.

4.1 Reducing the size of the quasi-normal equations

In terms of “un-augmented” quantities, ri = a0 + Axi − yi and (27) becomes the system∑
i

Wi(a0 + Axi) =
∑

i

Wiyi (42)∑
i

Wi(a0 + Axi)µT
i =

∑
i

Wiyiµ
T
i . (43)

From (42)

a0 = −Ω−1
∑

i

Wi(Axi − yi) (44)

where Ω .=
∑

i Wi. Inserting this into (43) yields the reduced-size system of quasi-normal
equations

∑
i

Wi

Axi −Ω−1
∑

j

WjAxj

µT
i =
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∑
i

Wi

yi −Ω−1
∑

j

Wjyj

µT
i (45)

which can be solved by either the fixed-point or Newton-Raphson iteration methods. For
the fixed-point method the basis is again to vectorize to remove vecA from the sums and
solve iteratively, re-determining a0 from (44) after each update of A. The reduction in
system size is from (nx + 1)ny to nxny linear equations, where nx = nx̂− 1 is the size of the
(un-augmented) xi, i.e. the number of independent coordinates.

4.2 Reduced-size form of Newton-Raphson iteration

The Jacobian matrix for Newton-Raphson iteration in the reduced-size formulation is more
complicated to derive due to the extra terms in (45) as compared to (27), but the result turns
out to be not much more complicated than (31). The derivation is given in the Appendix,
Sec. 8.3. The result is

J =
∑

i

{
µiµ

T
i ⊗Wi −Σxi ⊗Wirir

T
i Wi + ΞT

i WiΞi ⊗Wirir
T
i Wi

−WiΞi ./ Wiriµ
T
i −Wiriµ

T
i ./ WiΞi

}
− 〈Z〉Ω〈Z〉T (46)

where Ξi
.= AΣxi −Σxiyi and 〈Z〉 .= 〈M〉 − 〈E〉, with

〈M〉 .=

(∑
i

µi ⊗Wi

)
Ω−1, 〈E〉 .=

(∑
i

ΞT
i Wi ⊗Wiri

)
Ω−1. (47)

Equation (46) is the same as (31) except for the removal of hats from all quantities and the
additional term involving 〈Z〉.

4.3 Reduced-size form of covariance of A

The covariance of the un-augmented A is ΣA = J−1QJ−1 with J defined in (46). The
following expression for Q is worked out in the Appendix, Sec. 8.4:

Q =
∑

i

{
µiµ

T
i ⊗Wi + Σxi ⊗Wirir

T
i Wi −ΞT

i WiΞi ⊗Wirir
T
i Wi

}
− 〈M〉Ω〈M〉T + 〈E〉Ω〈E〉T. (48)

In the reduced-size analysis, the covariance of a0 (the ny ×ny upper left block of ΣÂ) must
be calculated separately. It works out to

Σa0 = Ω−1 + 〈Z〉TΣA〈Z〉 − 〈E〉TJ−1〈Z〉 − 〈Z〉TJ−1〈E〉. (49)

The covariance of a0 with A (the nxny × ny lower left block of ΣÂ and transpose of its
upper right block) is

Σa0,A = J−1〈E〉 −ΣA〈Z〉. (50)

4.4 Reduced-size form for the case of one dependent coordinate

When there is only one dependent coordinate (ny = 1) some significant simplifications in
the foregoing expressions are possible. This is a very common case and the simplifications
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improve the numerical properties of the linear systems being solved, so the results are worth
stating.

In (45) it becomes possible to move A (which is now a row vector aT) out of the sums
without resorting to the Kronecker product because Wi = Wi and Ω = Ω are scalars.
One can then define the weighted mean 〈x〉 = Ω−1

∑
j Wjxj and deviations from the mean

x′
i = xi − 〈x〉, and in the same manner define µ′

i and y′i (the latter now scalar). Then (45)
can be written

aT
∑

i

Wix
′
i(µ

′
i)

T =
∑

i

Wiy
′
i(µ

′
i)

T. (51)

For nx = 1 (straight line in 2-D) using (51) for the fixed-point iteration is essentially
Williamson’s method [10].

Defining εi = xi − µi, and ε′i = εi − 〈ε〉, (46) reduces to

J =
∑

i

Wi

{
(x′

i − 2ε′i)(x
′
i − 2ε′i)

T −Wir
2
i Σxi

}
. (52)

The covariance expressions (48), (49) and (50) become respectively

Q =
∑

i

Wi

{
µ′

i(µ
′
i)

T − ε′i(ε
′
i)

T + Wir
2
i Σxi

}
(53)

Σa0 = Ω−1 + (〈x〉 − 2〈ε〉)T Σa (〈x〉 − 2〈ε〉)− 2 (〈x〉 − 2〈ε〉)T J−1〈ε〉 (54)
Σa0,a = J−1〈ε〉 −Σa (〈x〉 − 2〈ε〉) . (55)

5 Application: xenon isotopes

As an example, this method is applied to a re-analysis of the data in a classic paper by
Reynolds et al. [9] on the study of xenon isotopes from the Apollo 14 lunar breccia 14318.
I selected this paper because it introduced what was at the time a novel method of solving,
with a minimum of assumptions, a recurring problem in that field, namely identifying the
isotopic composition of an unknown component of a mixture. Reynolds et al. used their
method to demonstrate the presence of 244Pu (half-life 81 Ma) in the early Moon. Their
method of analysis has been widely adopted by later workers; however, this method, while
adequate to establish the conclusion of their paper, was somewhat defective from a statistical
standpoint, as will be described later. The method developed here, while following the same
basic plan, remedies these defects.

The measured isotopic compositions are expected to be linear combinations of contri-
butions from three sources: trapped gas, with an isotopic composition close to the solar
value; cosmic-ray spallation of elements near Xe in atomic mass, which produces all iso-
topes in roughly comparable amounts; and spontaneous fission of heavy elements, which
only contributes to the isotopes reachable by a beta-decay chain from the neutron-rich side.

Consider first the simplified situation in which only three isotopic ratios are used. Sup-
pose a 3-dimensional plot is constructed with x = 126Xe/132Xe, y = 130Xe/132Xe, and
z = 136Xe/132Xe. If each measured sample is a mixture (a linear combination) of three
distinct components, then it must lie on a plane within this space. More specifically, it
must lie within the triangle whose vertices are the three component compositions. Therefore
fitting a plane to the data provides a constraint on these compositions. (Since the data were
measured directly as isotopic ratios and not as abundances, the plane is defined in terms of
ratios and is not constrained to pass through the origin.) For this plane to be adequately de-
fined by the data, it is necessary for different measurements to include significantly different
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proportions of the three components. Reynolds et al. used the method of stepwise thermal
release, in which the gas released at each of a series of successively higher temperatures is
measured. This works because the different components are sited in locations that have
different thermal release patterns. In order to determine the fissiogenic component, one can
make use of the fact that the beta-shielded isotopes 126Xe and 130Xe are not present in it,
so the fissiogenic ratio 136Xe/132Xe is found by the intercept of the fitted plane with the
z-axis.

Reynolds et al. repeated this process using other isotopes in turn in place of 136Xe to
determine the complete fissiogenic spectrum, which they then re-normalized to 136Xe ≡ 1.
However, this procedure of performing fits to selected sets of three isotopic ratios at a time
does not guarantee that the fits are compatible with one another, because there is no re-
quirement that the Deming adjusted values for the independent variables (126Xe/132Xe and
130Xe/132Xe) will be the same for all the fits. This difficulty can be avoided by performing
a single unified fit with these two isotopes as independent variables and all the other iso-
topes as dependent variables. Since xenon has 9 stable isotopes, there are 8 isotopic ratios
with respect to any chosen reference isotope, so the fit including all isotopes will have 2
independent coordinates and 6 dependent coordinates.

A small complication is introduced by the fact that the mass spectrometric measurements
determined the ratios of the various isotopes with respect to 130Xe rather than to 132Xe or
another fissiogenic isotope. The data still should lie on a plane, but since 130Xe is a beta-
shielded isotope, the fissiogenic component lies at infinity in this space. Reynolds et al. chose
to re-normalize the data to 132Xe so that the z-intercept could be used as described above to
obtain the fissiogenic production ratios. Doing this, however, introduces covariances among
the data that were not included in the fitting method they used. But there is a simple way
to avoid the need for changing the reference isotope. Returning to the simplified example,
we use the same four isotopes but perform a fit of the form:

132Xe/130Xe = a0 + a1(126Xe/130Xe) + a2(136Xe/130Xe). (56)

Now multiply this equation by 130Xe/136Xe so that 136Xe becomes the reference isotope:

132Xe/136Xe = a0(130Xe/136Xe) + a1(126Xe/136Xe) + a2. (57)

Setting the two beta-shielded isotopic ratios to zero yields a2 as the fissiogenic value of
132Xe/136Xe. For the multi-dimensional fit, one obtains the Â matrix with multiple rows,
one for each of the dependent variables, so the whole fissiogenic composition (except for
126Xe/136Xe and 130Xe/136Xe, which are zero by hypothesis) is obtained as the last col-
umn of this matrix. The variances and covariances of these values are obtained from the
corresponding entries of ΣÂ.

The results of this eight-dimensional (8D) fit are shown in Fig. 1. In addition to the
measurements of breccia 14318, the data set used for the fits includes a probable trapped
composition, known as SUCOR, derived as the surface-correlated component measured in
lunar fines. Including this component helps anchor the fitted plane and its beneficial effect
is confirmed by observing that the condition of the quasi-normal equations is reduced by a
factor of ∼ 3 (to 5.2×104 in the reduced-size formulation) while χ2

ν remains about the same.
The results obtained by Reynolds et al. using their method on the same data set are also
shown for comparison. As can be seen from the figure, the present method gives results that
agree within uncertainties with those of Reynolds et al., despite the differences of method.
The computed uncertainties in the coefficients are lower, probably through avoiding the
changes of reference isotope.

The 8D fit also includes two isotopes not included in the fits done by Reynolds et al.
The value for 124Xe, which is consistent with zero as expected for a beta-shielded isotope,
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Method Apparent fission spectrum
124Xe 128Xe 129Xe 131Xe 132Xe 134Xe 136Xe

This work −0.00092 0.0194 0.027 0.313 0.871 0.904 ≡ 1
±0.00076 ±0.0041 ±0.024 ±0.016 ±0.022 ±0.013

Ref. [9] — — 0.031 0.297 0.870 0.903 ≡ 1
±0.043 ±0.031 ±0.030 ±0.043

Figure 1: Results of least-squares fits to the data of Reynolds et al. [9].

provides an internal check on the method. The value for 128Xe, another beta-shielded isotope,
is positive by more than 4σ. This nonzero value probably arises from a contribution to this
isotope from capture of cosmic-ray secondary neutrons on 127I, which evidently correlates
with the fission component.

For this fit, χ2
ν = 1.90. This is significantly greater than unity, indicating that the three-

component model is not sufficient to account for all of the variation of the data. A detailed
examination shows that 131Xe alone contributes about half of the total χ2. Probably this
scatter is due to a contribution from neutron-capture on 130Te. This explanation is consistent
with the probable neutron-capture contribution to 128Xe, but for 131Xe this component does
not seem to be correlated with the fission component. If it is correlated to some extent, it
can increase the value of the apparent fission ratio of 131Xe/136Xe, but it is not possible with
the data on hand to assess by how much. The most one can say is that the value determined
by the fit is an upper limit to the true fission ratio for this isotope.

In meteorites, the isotope 129Xe can contain a contribution from beta decay of now-
extinct iodine 129I (half-life 16 Ma), but here 129Xe contributes only about 10% of the total
χ2, so this component can be at most a minor contribution in this lunar breccia.

Repeating the fit excluding the isotopes 128Xe, 129Xe, and 131Xe to eliminate the neutron-
capture and possible 129I-derived components gives virtually the same apparent fission yields
for 124Xe, 132Xe and 134Xe as the 8D fit, but with χ2

ν = 0.90, now quite close to unity. This
result supports the hypothesis that the six included isotopes form a 3-component system, and
that the quoted uncertainties of the data points are not substantially over- or underestimated.

6 Conclusion

The method presented here fits a general linear (affine) relationship between the independent
and dependent variables to data with variances and covariances that are known a priori, at
least up to a single overall multiplicative constant. For the fit not constrained to pass through
the origin, solving separately for the constant term is recommended because it reduces both
the size and, commonly, the condition of the linear system to be solved on each iteration.
The method can be used for the ordinary unweighted and weighted least-squares problems
(by suitably defining the covariance matrices), although more efficient techniques for solving
those problems exist. It also encompasses the methods of Williamson [10] and of Kent et al.
[6] as special cases in which there is only one dependent variable.

Kent et al. show how groups of related data that share one or more of the parameters of
the fit can be accommodated in a single unified treatment. The method works by defining
new coordinates for the unrelated portions of each group, artificially expanding the data
vector x. For each data point xi, the coordinates corresponding to the groups to which it
does not belong are set to 0, and their variances and covariances are set to 0 in �i. This
technique is equally usable with the more general method presented here.

Acknowledgement: I would like to thank Guy Tardanico for his assistance in the prelim-
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inary development of this method.

7 Appendix: matrix direct products

7.1 Kronecker Product

If A is m× p and B is q × n, then the Kronecker product of A and B is defined as

A⊗B .=

 a11B · · · a1pB
...

...
...

am1B · · · ampB

 (58)

This has mq rows and pn columns. We assign it a precedence higher than matrix addi-
tion/subtraction, but lower than matrix multiplication. The usefulness of the Kronecker
product for us is that if X is p× q so that AXB is defined, then

vec (AXB) = (BT ⊗A) vecX. (59)

Properties include (provided the indicated matrix operations are defined):

(A⊗B)⊗C = A⊗ (B⊗C)

A⊗ (B + C) = A⊗B + A⊗C

(A⊗B)T = AT ⊗BT

a⊗ (BC) = (a⊗B)C

aT ⊗ (BC) = B(aT ⊗C)

(BC)⊗ a = (B⊗ a)C

(BC)⊗ aT = B(C⊗ aT)

(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

(AB)⊗ (CD) = (A⊗C)(B⊗D)

a⊗ b = vec (baT)

a⊗ bT = abT

See [8] for more details.

7.2 Columnwise Outer Product

Now suppose that X is again p× q while now A is m× q and B is p× n, so that AXTB is
defined, then

vec (AXTB) = (BT ⊗A) vecXT

= (BT ⊗A)Kp,qvecX (60)

14



where Kp,q is the permutation matrix (called the commutation matrix by Magnus and
Neudecker [8]) that turns vecX into vecXT. I choose to avoid using the commutation
matrix and instead define a new matrix direct product,

A ./ B .= (BT ⊗A)Kp,q (61)

so that

vec (AXTB) = (A ./ B) vecXT. (62)

The reason for introducing this operator is that it has its own simple definition:

A ./ B .=

 a1b
T
1 · · · apb

T
1

...
...

...
a1b

T
n · · · apb

T
n

 . (63)

This has mn rows and pq columns. We assign it a precedence higher than matrix addi-
tion/subtraction, but lower than matrix multiplication. This can be called the columnwise
outer product of A and B.

The result in (63) does not seem to have been reported previously. It can be seen readily
by construction, but Magnus [7] has kindly provided an elegant proof: write

B =
∑

i

bie
T
i and A =

∑
j

ajf
T
j (64)

where ei and fj are appropriately-sized unit vectors. Then

BT ⊗A =
∑
ij

(eib
T
i )⊗ (ajf

T
j ) =

∑
ij

(ei ⊗ aj)(bi ⊗ fj)T. (65)

Now, using the properties [8] that KT
p,q = Kq,p and Kq,p(x⊗ y) = y ⊗ x for any p-vector x

and q-vector y,

(BT ⊗A)Kp,q =
∑
ij

(ei ⊗ aj)(fj ⊗ bi)T =
∑
ij

(eif
T
j )⊗ (ajb

T
i ) (66)

which is the desired result.
The following properties of the columnwise outer product are easily proved (assuming

the indicated matrix operations are defined):

A ./ (B + C) = A ./ B + A ./ C

(A + B) ./ C = A ./ C + B ./ C

(A ./ B)T = B ./ A

A(B ./ c) = (AB) ./ c

(a ./ B)C = a ./ (CTB)

a ./ b = bT ./ aT = abT
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7.3 Relationship Between Products

There are also some identities involving both ⊗ and ./:

A⊗ b = b ./ AT

A⊗ bT = A ./ b

a⊗B = B ./ aT

aT ⊗B = aT ./ BT

a⊗ (B ./ c) = B ./ cTa

a ./ (b ./ C) = C⊗ abT

(AB)⊗ (CD) = (C ./ AT)(B ./ DT)

(AB) ./ (CD) = (DT ⊗A)(B ./ C)

(AB) ./ (CD) = (A ./ D)(B⊗CT)

8 Appendix: Derivations

In this section we provide the detailed derivations of the results presented in the main body
of the paper (Sec. 2.3, 3.2, 4.2, and 4.3).

8.1 Derivation of Jacobian matrix Ĵ

Taking the derivative of (30) and using the properties of the Kronecker product ⊗ and the
column-wise outer product ./ defined in the previous section,

Ĵ =
∂F̂

∂Â
=

∑
i

{(
µ̂ir

T
i ⊗ Iny

) ∂Wi

∂Â
+ (µ̂i ⊗Wi)

∂ri

∂Â
+ (Wiri ./ Inx̂

)
∂µ̂i

∂Â

}
Now, from (19), (20) and (25),

∂Wi

∂Â
= − (Wi ⊗Wi)

∂W−1
i

∂Â

= − (Wi ⊗Wi)
∂

∂Â

(
ÂΣx̂iÂ

T − ÂΣT
x̂iyi

−Σx̂iyi ÂT + Σyi

)
= −(Wi ⊗Wi)

[
(ÂΣx̂i ⊗ Iny ) + (ÂΣx̂i ./ Iny )− (Σx̂iyi ⊗ Iny )− (Σx̂iyi ./ Iny )

]
= −

[
Wi(ÂΣx̂i −Σx̂iyi)⊗Wi + Wi(ÂΣx̂i −Σx̂iyi) ./ Wi

]
= −

[
WiΞ̂i ⊗Wi + WiΞ̂i ./ Wi

]
, (67)

∂ri

∂Â
=

∂

∂Â

(
Âx̂i − yi

)
= x̂T

i ⊗ Iny
, (68)

∂µ̂i

∂Â
=

∂

∂Â

[
x̂i − (ÂΣx̂i −Σx̂iyi)

TWiri

]
= −

[
Σx̂i ./ Wiri +

(
rT

i ⊗ (ÂΣx̂i −Σx̂iyi)
T
) ∂Wi

∂Â
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+ (ÂΣx̂i −Σx̂iyi)
TWi

∂ri

∂Â

]
= −

[
Σx̂i

./ Wiri −
(
rT

i ⊗ Ξ̂T
i

)(
WiΞ̂i ⊗Wi + WiΞ̂i ./ Wi

)
+ Ξ̂T

i Wi

(
x̂T

i ⊗ Iny

)]
= −Σx̂i ./ Wiri + rT

i WiΞ̂i ⊗ Ξ̂T
i Wi + Ξ̂T

i WiΞ̂i ./ Wiri − x̂T
i ⊗ Ξ̂T

i Wi. (69)

So

Ĵ =
∑

i

{
−
(
µ̂ir

T
i ⊗ Iny

) [
WiΞ̂i ⊗Wi + WiΞ̂i ./ Wi

]
+ (µ̂i ⊗Wi)

(
x̂T

i ⊗ Iny

)
+ (Wiri ./ Inx̂

) [−Σx̂i
./ Wiri

+ rT
i WiΞ̂i ⊗ Ξ̂T

i Wi + Ξ̂T
i WiΞ̂i ./ Wiri

− x̂T
i ⊗ Ξ̂T

i Wi

]}
(70)

=
∑

i

{
−µ̂ir

T
i WiΞ̂i ⊗Wi −WiΞ̂i ./ Wiriµ̂

T
i

+ µ̂ix̂
T
i ⊗Wi

−Σx̂i ⊗Wirir
T
i Wi

+ Wirir
T
i WiΞ̂i ./ WiΞ̂i + Ξ̂T

i WiΞ̂i ⊗Wirir
T
i Wi

−Wirix̂
T
i ./ WiΞ̂i

}
Now put Ξ̂T

i Wiri = ε̂i = x̂i − µ̂i and collect terms.

Ĵ =
∑

i

{
µ̂iµ̂

T
i ⊗Wi −Σx̂i ⊗Wirir

T
i Wi + Ξ̂T

i Wi Ξ̂i ⊗Wirir
T
i Wi

−Wi Ξ̂i ./ Wiriµ̂
T
i −Wiriµ̂

T
i ./ Wi Ξ̂i

}
. (71)

8.2 Derivation of matrix Q̂

Here we derive the matrix Q̂ defined in (40) in Sec. 3.2. Define

F̂x̂i

.=
∂F̂
∂x̂i

= µ̂i ⊗WiÂ + Wiri ./
(
Inx̂

− ÂTWiΞ̂i

)
F̂yi

.=
∂F̂
∂yi

= −µ̂i ⊗Wi + Wiri ./ WiΞ̂i

Then

∂F̂
∂xi

�i

(
∂F̂
∂xi

)T

=
[
F̂x̂i

, F̂yi

] [ Σx̂i
ΣT

x̂iyi

Σx̂iyi
Σyi

] [
F̂T

x̂i

F̂T
yi

]
= F̂x̂i

Σx̂i
F̂T

x̂i
+ F̂x̂iΣ

T
x̂iyi

F̂T
yi

+ F̂yiΣx̂iyiF̂
T
x̂i

+ F̂yiΣyiF̂
T
yi

We now work out each of these four terms separately, making extensive use of the properties
of the Kronecker product and columnwise outer product listed in the previous section:

F̂x̂iΣx̂iF̂
T
x̂i

= (µ̂i ⊗WiÂ)(µ̂T
i ⊗Σx̂iÂ

TWi)
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+ (µ̂i ⊗WiÂ)
(
(Σx̂i −Σx̂iÂ

TWiΞ̂i) ./ Wiri

)
+
(
Wiri ./ (Inx̂

− ÂTWiΞ̂i)
)

(µ̂T
i ⊗Σx̂iÂ

TWi)

+
(
Wiri ./ (Inx̂

− ÂTWiΞ̂i)
)(

(Σx̂i −Σx̂iÂ
TWiΞ̂i) ./ Wiri

)
= µ̂iµ̂

T
i ⊗WiÂΣx̂iÂ

TWi

+ WiÂ(Σx̂i −Σx̂iÂ
TWiΞ̂i) ./ Wiriµ̂

T
i

+ Wiriµ̂
T
i ./ WiÂ(Σx̂i −Σx̂iÂ

TWiΞ̂i)
+ (Inx̂

− Ξ̂T
i WiÂ)(Σx̂i −Σx̂iÂ

TWiΞ̂i)⊗Wirir
T
i Wi

F̂x̂iΣ
T
x̂iyi

F̂T
yi

= − (µ̂i ⊗WiÂ)(µ̂T
i ⊗ΣT

x̂iyi
Wi)

+ (µ̂i ⊗WiÂ)(ΣT
x̂iyi

WiΞ̂i ./ Wiri)

−
(
Wiri ./ (Inx̂

− ÂTWiΞ̂i)
)

(µ̂T
i ⊗ΣT

x̂iyi
Wi)

+
(
Wiri ./ (Inx̂

− ÂTWiΞ̂i)
)

(ΣT
x̂iyi

WiΞ̂i ./ Wiri)

= − µ̂iµ̂
T
i ⊗WiÂΣT

x̂iyi
Wi

+ WiÂΣT
x̂iyi

WiΞ̂i ./ Wiriµ̂
T
i

−Wiriµ̂
T
i ./ (WiΣx̂iyi −WiΣx̂iyiÂ

TWiΞ̂i)

+ (ΣT
x̂iyi

WiΞ̂i − Ξ̂T
i WiÂΣT

x̂iyi
WiΞ̂i)⊗Wirir

T
i Wi

F̂yi
Σx̂iyi

F̂T
x̂i

=
(
F̂x̂iΣ

T
x̂iyi

F̂T
yi

)T

= − µ̂iµ̂
T
i ⊗WiΣx̂iyiÂ

TWi

+ Wiriµ̂
T
i ./ WiÂΣT

x̂iyi
WiΞ̂i

− (WiΣx̂iyi
−WiΣx̂iyi

ÂTWiΞ̂i) ./ Wiriµ̂
T
i

+ (Ξ̂T
i WiΣx̂iyi − Ξ̂T

i WiΣx̂iyiÂ
TWiΞ̂i)⊗Wirir

T
i Wi

F̂yiΣ
T
yi

F̂T
yi

= (µ̂i ⊗Wi)(µ̂T
i ⊗ΣyiWi)

− (µ̂i ⊗Wi)(ΣyiWiΞ̂i ./ Wiri))

− (Wiri ./ WiΞ̂i)(µ̂T
i ⊗ΣyiWi)

+ (Wiri ./ WiΞ̂i)(ΣyiWiΞ̂i ./ Wiri))
= µ̂iµ̂

T
i ⊗WiΣyiWi

−WiΣyiWiΞ̂i ./ Wiriµ̂
T
i

−Wiriµ̂
T
i ./ WiΣyiWiΞ̂i

+ Ξ̂T
i WiΣyiWiΞ̂i ⊗Wirir

T
i Wi.

Collecting terms in the sum, we write schematically

F̂x̂i
Σx̂i

F̂T
x̂i

+ F̂x̂iΣ
T
x̂iyi

F̂T
yi

+ F̂yiΣx̂iyiF̂
T
x̂i

+ F̂yiΣyiF̂
T
yi

= µ̂iµ̂
T
i ⊗T1 + T2 ./ Wiriµ̂

T
i + Wiriµ̂

T
i ./ T3 + T4 ⊗Wirir

T
i Wi

where

T1 = WiÂΣx̂iÂ
TWi −WiÂΣT

x̂iyi
Wi −WiΣx̂iyiÂ

TWi + WiΣyiWi
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= Wi

[
ÂΣx̂iÂ

T − ÂΣT
x̂iyi

−Σx̂iyiÂ
T + Σyi

]
Wi = Wi

T2 = WiÂ(Σx̂i −Σx̂iÂ
TWiΞ̂i) + WiÂΣT

x̂iyi
WiΞ̂i

− (WiΣx̂iyi
−WiΣx̂iyi

ÂTWiΞ̂i)−WiΣyiWiΞ̂i

= WiÂΣx̂i −WiÂΣx̂iÂ
TWiΞ̂i + WiÂΣT

x̂iyi
WiΞ̂i

−WiΣx̂iyi
+ WiΣx̂iyi

ÂTWiΞ̂i −WiΣyiWiΞ̂i

= Wi(ÂΣx̂i −Σx̂iyi)−Wi

(
ÂΣx̂iÂ

T − ÂΣT
x̂iyi

−Σx̂iyiÂ
T + Σyi

)
WiΞ̂i

= Wi(ÂΣx̂i −Σx̂iyi)−Wi(ÂΣx̂i −Σx̂iyi) = 0

T3 = T2 = 0

T4 = (Inx̂
− Ξ̂T

i WiÂ)(Σx̂i −Σx̂iÂ
TWiΞ̂i)

+ (ΣT
x̂iyi

WiΞ̂i − Ξ̂T
i WiÂΣT

x̂iyi
WiΞ̂i)

+ (Ξ̂T
i WiΣx̂iyi

− Ξ̂T
i WiΣx̂iyiÂ

TWiΞ̂i) + Ξ̂T
i WiΣyiWiΞ̂i

= Σx̂i −Σx̂iÂ
TWiΞ̂i − Ξ̂T

i WiÂΣx̂i + Ξ̂T
i WiÂΣx̂iÂ

TWiΞ̂i

+ ΣT
x̂iyi

WiΞ̂i − Ξ̂T
i WiÂΣT

x̂iyi
WiΞ̂i + Ξ̂T

i WiΣx̂iyi

− Ξ̂T
i WiΣx̂iyi

ÂTWiΞ̂i + Ξ̂T
i WiΣyiWiΞ̂i

= Σx̂i − (ÂΣx̂i −Σx̂iyi)
TWiΞ̂i − Ξ̂T

i Wi(ÂΣx̂i −Σx̂iyi)

+ Ξ̂T
i Wi

[
ÂΣx̂iÂ

T − ÂΣT
x̂iyi

−Σx̂iyiÂ
T + Σyi

]
WiΞ̂i

= Σx̂i − Ξ̂T
i WiΞ̂i

Putting it all together, we arrive at

Q̂ =
∑

i

{
µ̂iµ̂

T
i ⊗Wi + Σx̂i ⊗Wirir

T
i Wi − Ξ̂i

TWi Ξ̂i ⊗Wirir
T
i Wi

}
. (72)

8.3 Derivation of reduced-size Jacobian matrix J

We begin by writing (45) as

F(A) .=
∑

i

Wi riµ
T
i = 0 (73)

Taking the derivative of (73),

J =
∂F
∂A

=
∑

i

{
(µir

T
i ⊗ Iny )

∂Wi

∂A
+ (µi ⊗Wi)

∂ri

∂A
+ (Wiri ./ Inx)

∂µi

∂A

}
.= J1 + J2 + J3 (74)

where for future convenience we assign names to each of the three terms.

∂Wi

∂A
= −(Wi ⊗Wi)

∂W−1
i

∂A

= −(Wi ⊗Wi)
∂

∂A

[
AΣxi

AT −AΣT
xiyi

−Σxiyi AT + Σyi

]
= −(Wi ⊗Wi)

[
(AΣxi ⊗ Iny ) + (AΣxi ./ Iny )− (Σxiyi ⊗ Iny )− (Σxiyi ./ Iny )

]
= − [Wi(AΣxi −Σxiyi)⊗Wi + Wi(AΣxi −Σxiyi) ./ Wi] . (75)
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∂ri

∂A
=

∂

∂A
[Axi + a0 − yi]

= xT
i ⊗ Iny +

∂a0

∂A
. (76)

∂a0

∂A
= − ∂

∂A

Ω−1
∑

j

Wj(Axj − yj)


= −

∑
j

(Axj − yj)TWj ⊗ Iny

 ∂Ω−1

∂A

+
∑

j

(
(Axj − yj)T ⊗Ω−1

) ∂Wj

∂A
+
∑

j

xT
j ⊗Ω−1Wj

 . (77)

∂Ω−1

∂A
= −

(
Ω−1 ⊗Ω−1

) ∂Ω
∂A

= −
(
Ω−1 ⊗Ω−1

)∑
i

∂Wi

∂A

=
(
Ω−1 ⊗Ω−1

)∑
i

[Wi(AΣxi −Σxiyi)⊗Wi + Wi(AΣxi −Σxiyi) ./ Wi]

=
∑

i

[
Ω−1Wi(AΣxi −Σxiyi)⊗Ω−1Wi

+ Ω−1Wi(AΣxi
−Σxiyi

) ./ WiΩ−1
]
. (78)

∂µi

∂A
=

∂

∂A

[
xi − (AΣxi −Σxiyi)

T Wiri

]
= −

[
Σxi ./ Wiri +

(
rT

i ⊗ (AΣxi −Σxiyi)
T
) ∂Wi

∂A

+ (AΣxi −Σxiyi)
T Wi

∂ri

∂A

]
. (79)

From here on, to reduce clutter, we will set

Ξi
.= (AΣxi −Σxiyi)

zi
.= Axi − yi = ri − a0.

In what follows we will use µi = xi − ΞT
i Wiri and zi + a0 = ri to help simplify the

expressions.
The first term inside brackets in (77) is∑

j

zT
j Wj ⊗ Iny

∑
i

[
Ω−1WiΞi ⊗Ω−1Wi + Ω−1WiΞi ./ WiΩ−1

]
=
∑

j

∑
i

{
zT

j WjΩ−1WiΞi ⊗Ω−1Wi + Ω−1WiΞi ./ WiΩ−1Wjzj

}
= Ω−1

∑
j

∑
i

{
zT

j WjΩ−1WiΞi ⊗Wi + WiΞi ./ WiΩ−1Wjzj

}

= Ω−1
∑

i


∑

j

zT
j WjΩ−1

WiΞi ⊗Wi + WiΞi ./ Wi

Ω−1
∑

j

Wjzj
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= −Ω−1
∑

i

{
aT

0 WiΞi ⊗Wi + WiΞi ./ Wia0

}
.

The second term inside brackets in (77) is

−
∑

j

(
zT

j ⊗Ω−1
)
[WjΞi ⊗Wj + WjΞi ./ Wj ]

= −
∑

j

{
zT

j WjΞi ⊗Ω−1Wj + Ω−1WjΞi ./ Wjzj

}
= −Ω−1

∑
j

{
zT

j WjΞi ⊗Wj + WjΞi ./ Wjzj

}
.

The third term inside brackets in (77) is∑
j

xT
j ⊗Ω−1Wj = Ω−1

∑
j

xT
j ⊗Wj .

Thus (76) expands into

∂ri

∂A
= xT

i ⊗ Iny + Ω−1
∑

j

{
aT

0 WjΞi ⊗Wj + WjΞi ./ Wja0

+ zT
j WjΞi ⊗Wj + WjΞi ./ Wjzj − xT

j ⊗Wj

}
= xT

i ⊗ Iny + Ω−1
∑

j

{
rT

j WjΞi ⊗Wj − xT
j ⊗Wj

+ WjΞi ./ Wjrj}

= xT
i ⊗ Iny + Ω−1

∑
j

{
WjΞi ./ Wjrj − µT

j ⊗Wj

}
. (80)

The first term inside brackets in (79) is

Σxi
./ Wiri

which we leave alone. The second term inside brackets in (79) is

−
(
rT

i ⊗ΞT
i Wi

)
[WiΞi ⊗Wi + WiΞi ./ Wi]

= −
[
rT

i WiΞi ⊗ΞT
i Wi + ΞT

i WiΞi ./ Wiri

]
.

The third term inside brackets in (79) is

ΞT
i Wi

xT
i ⊗ Iny + Ω−1

∑
j

[
WjΞi ./ Wjrj − µT

j ⊗Wj

]
= xT

i ⊗ΞT
i Wi +

∑
j

[
ΞT

i WiΩ−1WjΞi ./ Wjrj − µT
j ⊗ΞT

i WiΩ−1Wj

]
.

Thus (79) expands into

∂µi

∂A
= −Σxi

./ Wiri + rT
i WiΞi ⊗ΞT

i Wi + ΞT
i WiΞi ./ Wiri

− xT
i ⊗ΞT

i Wi
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−
∑

j

[
ΞT

i WiΩ−1WjΞi ./ Wjrj − µT
j ⊗ΞT

i WiΩ−1Wj

]
= −Σxi ./ Wiri + ΞT

i WiΞi ./ Wiri − µT
i ⊗ΞT

i Wi

−
∑

j

[
ΞT

i WiΩ−1WjΞi ./ Wjrj − µT
j ⊗ΞT

i WiΩ−1Wj

]
. (81)

The terms in (74) are

J1 =
∑

i

(µir
T
i ⊗ Iny )

∂Wi

∂A

=
∑

i

−(µir
T
i ⊗ Iny

) [WiΞi ⊗Wi + WiΞi ./ Wi]

= −
∑

i

{
µir

T
i WiΞi ⊗Wi + WiΞi ./ Wiriµ

T
i

}
. (82)

J2 =
∑

i

(µi ⊗Wi)
∂ri

∂A

=
∑

i

(µi ⊗Wi)

xT
i ⊗ Iny + Ω−1

∑
j

[
WjΞi ./ Wjrj − µT

j ⊗Wj

]
=

∑
i

{
µix

T
i ⊗Wi

+
∑

j

[
WiΩ−1WjΞi ./ Wjrjµ

T
i − µiµ

T
j ⊗WiΩ−1Wj

]}
. (83)

J3 =
∑

i

(Wiri ./ Inx)
∂µi

∂A

=
∑

i

(Wiri ./ Inx
)
{
−Σxi ./ Wiri + ΞT

i WiΞi ./ Wiri − µT
i ⊗ΞT

i Wi

−
∑

j

[
ΞT

i WiΩ−1WjΞi ./ Wjrj − µT
j ⊗ΞT

i WiΩ−1Wj

]}
=

∑
i

{
−Σxi

⊗Wirir
T
i Wi

+ ΞT
i WiΞi ⊗Wirir

T
i Wi −Wiriµ

T
i ./ WiΞi

+
∑

j

[
Wiriµ

T
j ./ WjΩ−1WiΞi

−ΞT
i WiΩ−1WjΞi ⊗Wirir

T
j Wj

] }
. (84)

Putting it all together,

J = J1 + J2 + J3

=
∑

i

{
−µir

T
i WiΞi ⊗Wi −WiΞi ./ Wiriµ

T
i

+ µix
T
i ⊗Wi

−Σxi ⊗Wirir
T
i Wi

+ ΞT
i WiΞi ⊗Wirir

T
i Wi −Wiriµ

T
i ./ WiΞi

+
∑

j

[
WiΩ−1WjΞi ./ Wjrjµ

T
i − µiµ

T
j ⊗WiΩ−1Wj
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+ Wiriµ
T
j ./ WjΩ−1WiΞi

−ΞT
i WiΩ−1WjΞi ⊗Wirir

T
j Wj

]}
=

∑
i

{
µiµ

T
i ⊗Wi −Σxi ⊗Wirir

T
i Wi

+ ΞT
i WiΞi ⊗Wirir

T
i Wi

−WiΞi ./ Wiriµ
T
i −Wiriµ

T
i ./ WiΞi

+
∑

j

[
WiΩ−1WjΞi ./ Wjrjµ

T
i + Wiriµ

T
j ./ WjΩ−1WiΞi

− µiµ
T
j ⊗WiΩ−1Wj −ΞT

i WiΩ−1WjΞi ⊗Wirir
T
j Wj

]}
. (85)

Bearing in mind that the order of summations can be interchanged, it is evident from the
form of this expression that this matrix is symmetric. The portion before the sum over j
is identical to (31) except for removing the hats on all quantities that take them. Now, the
double sum can be factored into independent sums:(∑

i

µi ⊗Wi

)
Ω−1

∑
j

WjΞi ./ Wjrj


+

(∑
i

Wiri ./ WiΞi

)
Ω−1

∑
j

µT
j ⊗Wj


−

(∑
i

µi ⊗Wi

)
Ω−1

∑
j

µT
j ⊗Wj


−

(∑
i

ΞT
i Wi ⊗Wiri

)
Ω−1

∑
j

WjΞi ⊗ rT
j Wj

 (86)

Define

Mi
.= µi ⊗ Iny (nxny × ny) (87)

Ei
.= Wiri ./ Ξi = ΞT

i ⊗Wiri (nxny × ny) (88)

Then define

〈M〉 .=
∑

i

MiWiΩ−1 =

(∑
i

µi ⊗Wi

)
Ω−1 (89)

〈E〉 .=
∑

i

EiWiΩ−1 =

(∑
i

ΞT
i Wi ⊗Wiri

)
Ω−1 (90)

Then this portion of J is

〈M〉Ω 〈E〉T + 〈E〉Ω 〈M〉T − 〈M〉Ω 〈M〉T − 〈E〉Ω 〈E〉T

= − (〈M〉 − 〈E〉)Ω (〈M〉 − 〈E〉)T

There does not seem to be any way to reduce (Mi −Ei) to a single Kronecker product.
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We finally obtain

J =
∑

i

{
µiµ

T
i ⊗Wi −Σxi ⊗Wirir

T
i Wi

+ ΞT
i WiΞi ⊗Wirir

T
i Wi

−WiΞi ./ Wiriµ
T
i −Wiriµ

T
i ./ WiΞi

}
− (〈M〉 − 〈E〉)Ω (〈M〉 − 〈E〉)T (91)

8.4 Derivation of reduced-size matrix Q

The covariance matrix for the full coefficient matrix A unpacks as

ΣÂ

.=

ny nxny

ny

nxny

[
Σa0 ΣT

a0,A

Σa0,A ΣA

]
(92)

=
∑

i

[
da0
dxi
dA
dxi

]
�i

[ (
da0
dxi

)T (
dA
dxi

)T
]

=

 ∑i
da0
dxi

�i

(
da0
dxi

)T ∑
i

da0
dxi

�i

(
dA
dxi

)T

∑
i

dA
dxi

�i

(
da0
dxi

)T ∑
i

dA
dxi

�i

(
dA
dxi

)T

 (93)

Following the same procedure as in Sec. 3.2, the covariance matrix for A is given by

ΣA = J−1 QJ−1 (94)

where

Q .=
∑

i

{
FxiΣxiF

T
xi

+ FxiΣ
T
xiyi

FT
yi

+ FyiΣxiyiF
T
xi

+ FyiΣyiF
T
yi

}
. (95)

Now,

∂Wj

∂xi
=

∂Wj

∂yi
= 0, i, j = 1, . . . ,m

∂a0

∂xi
= − ∂

∂xi

Ω−1
∑

j

Wj(Axj − yj)

 = −Ω−1WiA, i = 1, . . . ,m

∂a0

∂yi
= − ∂

∂yi

Ω−1
∑

j

Wj(Axj − yj)

 = Ω−1Wi, i = 1, . . . ,m

∂rj

∂xi
= A δij +

∂a0

∂xi
= A δij −Ω−1WiA, i, j = 1, . . . ,m

∂rj

∂yi
= −Iny δij +

∂a0

∂yi
= −Iny δij + Ω−1Wi, i, j = 1, . . . ,m

∂µj

∂xi
= Inx

δij −ΞT
j Wj

∂rj

∂xi

= Inx δij −ΞT
i WiA δij + ΞT

j WjΩ−1WiA, i, j = 1, . . . ,m

∂µj

∂yi
= −ΞT

j Wj
∂rj

∂yi
= ΞT

i Wi δij −ΞT
j WjΩ−1Wi, i, j = 1, . . . ,m
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then

Fxi =
∂F
∂xi

=
∂

∂xi

∑
j

Wj rjµ
T
j


=

∑
j

{
(µj ⊗Wj)

∂rj

∂xi
+ (Wj rj ./ Inx

)
∂µj

∂xi

}
=

∑
j

{
(µj ⊗Wj)

(
A δij −Ω−1WiA

)
+ (Wj rj ./ Inx)

(
Inx δij −ΞT

i WiA δij + ΞT
j WjΩ−1WiA

)}
= µi ⊗WiA + Wi ri ./

(
Inx −ATWiΞi

)
−
∑

j

{(µj ⊗Wj)− (Wj rj ./ WjΞi)}Ω−1WiA

= µi ⊗WiA + Wi ri ./
(
Inx −ATWiΞi

)
− 〈Z〉WiA (96)

where for convenience we have defined

〈Z〉 .= 〈M〉 − 〈E〉 (97)

Fyi =
∂F
∂yi

=
∂

∂yi

∑
j

Wj rjµ
T
j


=

∑
j

{
(µj ⊗Wj)

∂rj

∂yi
+ (Wj rj ./ Inx

)
∂µj

∂yi

}
=

∑
j

{
(µj ⊗Wj)

(
−Iny δij + Ω−1Wi

)
+ (Wj rj ./ Inx)

(
ΞT

i Wi δij −ΞT
j WjΩ−1Wi

)}
= −µi ⊗Wi + Wi ri ./ WiΞi

+
∑

j

{(µj ⊗Wj)− (Wj rj ./ WjΞi)}Ω−1Wi

= −µi ⊗Wi + Wi ri ./ WiΞi + 〈Z〉Wi (98)

To avoid dizziness when collecting terms below, line numbers in brackets are attached to the
final expression.

Fxi
Σxi

FT
xi

= (µi ⊗WiA)
(
µT

i ⊗ΣxiA
TWi

)
+ (µi ⊗WiA)

(
(Σxi −ΣxiA

TWiΞi) ./ Wi ri

)
− (µi ⊗WiA)ΣxiA

TWi〈Z〉T

+
(
Wi ri ./ (Inx −ATWiΞi)

) (
µT

i ⊗ΣxiA
TWi

)
+
(
Wi ri ./ (Inx −ATWiΞi)

) (
(Σxi −ΣxiA

TWiΞi) ./ Wi ri

)
−
(
Wi ri ./ (Inx −ATWiΞi)

)
ΣxiA

TWi〈Z〉T

− 〈Z〉WiA
(
µT

i ⊗ΣxiA
TWi

)
− 〈Z〉WiA

(
(Σxi −ΣxiA

TWiΞi) ./ Wi ri

)
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+ 〈Z〉WiAΣxiA
TWi〈Z〉T

= [1] µiµ
T
i ⊗WiAΣxiA

TWi

[2] + Wi(AΣxi −AΣxiA
TWiΞi) ./ Wi riµ

T
i

[3] − µi ⊗WiAΣxi
ATWi〈Z〉T

[4] + Wi riµ
T
i ./ Wi(AΣxi −AΣxiA

TWiΞi)
[5] + (Inx −ΞT

i WiA)(Σxi −ΣxiA
TWiΞi)⊗Wi rir

T
i Wi

[6] −Wi ri ./ 〈Z〉Wi(AΣxi
−AΣxi

ATWiΞi)
[7] − µT

i ⊗ 〈Z〉WiAΣxiA
TWi

[8] − 〈Z〉Wi(AΣxi −AΣxiA
TWiΞi) ./ Wi ri

[9] + 〈Z〉WiAΣxiA
TWi〈Z〉T

The other terms in Q can be written down by appropriate substitution of A by −1, Σxi
by

Σxiyi , ΣT
xiyi

or Σyi , and omitting of Inx .

Fxi
ΣT

xiyi
FT

yi
= [1] − µiµ

T
i ⊗WiAΣT

xiyi
Wi

[2] + WiAΣT
xiyi

WiΞi ./ Wi riµ
T
i

[3] + µi ⊗WiAΣT
xiyi

Wi〈Z〉T

[4] −Wi riµ
T
i ./ Wi(Σxiyi −ΣxiyiA

TWiΞi)
[5] + (ΣT

xiyi
WiΞi −ΞT

i WiAΣT
xiyi

WiΞi)⊗Wi rir
T
i Wi

[6] + Wi ri ./ 〈Z〉Wi(Σxiyi −ΣxiyiA
TWiΞi)

[7] + µT
i ⊗ 〈Z〉WiAΣT

xiyi
Wi

[8] − 〈Z〉WiAΣT
xiyi

WiΞi ./ Wi ri

[9] − 〈Z〉WiAΣT
xiyi

Wi〈Z〉T

FyiΣxiyiF
T
xi

= (FxiΣ
T
xiyi

FT
yi

)T

= [1] − µiµ
T
i ⊗WiΣxiyiA

TWi

[4] + Wi riµ
T
i ./ WiAΣT

xiyi
WiΞi

[7] + µT
i ⊗ 〈Z〉WiΣxiyiA

TWi

[2] −Wi(Σxiyi −ΣxiyiA
TWiΞi) ./ Wi riµ

T
i

[5] + (ΞT
i WiΣxiyi

−ΞT
i WiΣxiyiA

TWiΞi)⊗Wi rir
T
i Wi

[8] + 〈Z〉Wi(Σxiyi −ΣxiyiA
TWiΞi) ./ Wi ri

[3] + µi ⊗WiΣxiyiA
TWi〈Z〉T

[6] −Wi ri ./ 〈Z〉WiAΣT
xiyi

WiΞi

[9] − 〈Z〉WiΣxiyiA
TWi〈Z〉T

FyiΣyiF
T
yi

= [1] µiµ
T
i ⊗WiΣyiWi

[2] −WiΣyiWiΞi ./ Wi riµ
T
i

[3] − µi ⊗WiΣyi
Wi〈Z〉T

[4] −Wi riµ
T
i ./ WiΣyiWiΞi

[5] + ΞT
i WiΣyiWiΞi ⊗Wi rir

T
i Wi

[6] + Wi ri ./ 〈Z〉WiΣyi
WiΞi

[7] − µT
i ⊗ 〈Z〉WiΣyiWi
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[8] + 〈Z〉WiΣyiWiΞi ./ Wi ri

[9] + 〈Z〉WiΣyiWi〈Z〉T

Upon collecting terms, lines 1, 2, 4, and 5 are the same as for the full-size case and will yield
the same result as (72) with the removal of all hats. The additional terms here are:

[3] = −µi ⊗Wi

[
AΣxiA

T −AΣT
xiyi

−ΣxiyiA
T + Σyi

]
Wi〈Z〉T

= −µi ⊗Wi〈Z〉T

and transposing gives
[7] = −µT

i ⊗ 〈Z〉Wi

[6] = −Wi ri ./ 〈Z〉Wi

[
(AΣxi −AΣxiA

TWiΞi)

− (Σxiyi −ΣxiyiA
TWiΞi) + AΣT

xiyi
WiΞi −ΣyiWiΞi

]
= Wi ri ./ 〈Z〉Wi

[
(AΣxiA

T −ΣxiyiA
T −AΣT

xiyi
+ Σyi)WiΞi − (AΣxi −Σxiyi)

]
= Wi ri ./ 〈Z〉 [WiΞi −WiΞi] = 0

[8] = 0

[9] = 〈Z〉Wi

[
AΣxiA

T −AΣT
xiyi

−ΣxiyiA
T + Σyi

]
Wi〈Z〉T

= 〈Z〉Wi〈Z〉T

Thus removing hats from (72) and adding the new terms, we get

Q =
∑

i

{
µiµ

T
i ⊗Wi + Σxi ⊗Wirir

T
i Wi −ΞT

i WiΞi ⊗Wirir
T
i Wi

}
−

(∑
i

µi ⊗Wi

)
〈Z〉T − 〈Z〉

(∑
i

µT
i ⊗Wi

)

+ 〈Z〉

(∑
i

Wi

)
〈Z〉T. (99)

Using
∑

i Wi = Ω and the definition of 〈Z〉 in (97), the last terms are

−〈M〉Ω (〈M〉 − 〈E〉)T − (〈M〉 − 〈E〉)Ω 〈M〉T + (〈M〉 − 〈E〉)Ω (〈M〉 − 〈E〉)T

= −〈M〉Ω〈M〉T + 〈M〉Ω〈E〉T − 〈M〉Ω〈M〉T + 〈E〉Ω〈M〉T

+ 〈M〉Ω〈M〉T − 〈M〉Ω〈E〉T − 〈E〉Ω〈M〉T + 〈E〉Ω〈E〉T

= −
(
〈M〉Ω〈M〉T − 〈E〉Ω〈E〉T

)
Therefore

Q =
∑

i

{
µiµ

T
i ⊗Wi + Σxi ⊗Wirir

T
i Wi −ΞT

i WiΞi ⊗Wirir
T
i Wi

}
−
(
〈M〉Ω〈M〉T − 〈E〉Ω〈E〉T

)
. (100)

Now we turn to the calculation of Σa0 . From (93),

Σa0 =
∑

i

da0

dxi
�i

[
da0

dxi

]T
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=
∑

i

[
∂a0

∂xi
+

∂a0

∂A
dA
dxi

]
�i

[
∂a0

∂xi
+

∂a0

∂A
dA
dxi

]T
=

∑
i

{
∂a0

∂xi
�i

[
∂a0

∂xi

]T
+

∂a0

∂A
dA
dxi

�i

[
dA
dxi

]T [
∂a0

∂A

]T
+

∂a0

∂xi
�i

[
dA
dxi

]T [
∂a0

∂A

]T
+

∂a0

∂A
dA
dxi

�i

[
∂a0

∂xi

]T}
. (101)

Differentiating (44) we obtain

∂a0

∂xi
= −Ω−1WiA, i = 1, . . . n (102)

∂a0

∂yi
= Ω−1Wi, i = 1, . . . n (103)

So the first term in (101) is∑
i

∂a0

∂xi
�i

[
∂a0

∂xi

]T
=

∑
i

Ω−1Wi

[
−A Iny

] [ Σxi ΣT
xiyi

Σxiyi
Σyi

] [
−AT

Iny

]
WiΩ−1

= Ω−1
∑

i

Wi

[
AΣxiA

T −AΣT
xiyi

−ΣxiyiA
T + Σyi

]
WiΩ−1

= Ω−1
∑

i

WiΩ−1 = Ω−1.

Now, ∂a0/∂A is already worked out on pages 19 ff. as the second term of (76), and
appears as the second term in (80). Using the definitions introduced subsequently to that
point, it becomes

∂a0

∂A
= Ω−1

m∑
i=1

{
WiΞi ./ Wiri − µT

i ⊗Wi

}
= (〈E〉 − 〈M〉)T = −〈Z〉T. (104)

So the second term in (101) is∑
i

∂a0

∂A
dA
dxi

�i

[
dA
dxi

]T [
∂a0

∂A

]T
=

∂a0

∂A
ΣA

[
∂a0

∂A

]T
= 〈Z〉TΣA〈Z〉.

The last two terms in (101) are transposes of each other. Using (39),

dA
dxi

= −J−1 ∂F
∂xi

= −J−1
[

Fxi , Fyi

]
,

the first is∑
i

∂a0

∂xi
�i

[
dA
dxi

]T [
∂a0

∂A

]T
=

∑
i

Ω−1Wi

[
−A Iny

] [ Σxi ΣT
xiyi

Σxiyi
Σyi

] [
FT

xi

FT
yi

]
J−1〈Z〉

= Ω−1
∑

i

Wi

[
−AΣxiF

T
xi
−AΣT

xiyi
FT

yi
+ ΣxiyiF

T
xi

+ ΣyiF
T
yi

]
J−1〈Z〉
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The terms inside brackets are

−AΣxiF
T
xi

= −AΣxi

[
µT

i ⊗ATWi + (Inx −ATWiΞi) ./ Wi ri −ATWi〈Z〉T
]

= −µT
i ⊗AΣxiA

TWi −AΣxi ./ Wi ri + AΣxiA
TWiΞi ./ Wi ri + AΣxiA

TWi〈Z〉T

−AΣT
xiyi

FT
yi

= −AΣT
xiyi

[
−µT

i ⊗Wi + WiΞi ./ Wi ri + Wi〈Z〉T
]

= µT
i ⊗AΣT

xiyi
Wi −AΣT

xiyi
WiΞi ./ Wi ri −AΣT

xiyi
Wi〈Z〉T

ΣxiyiF
T
xi

= Σxiyi

[
µT

i ⊗ATWi + (Inx −ATWiΞi) ./ Wi ri −ATWi〈Z〉T
]

= µT
i ⊗ΣxiyiA

TWi + Σxiyi ./ Wi ri −ΣxiyiA
TWiΞi ./ Wi ri −ΣxiyiA

TWi〈Z〉T

ΣyiF
T
yi

= Σyi

[
−µT

i ⊗Wi + WiΞi ./ Wi ri + Wi〈Z〉T
]

= −µT
i ⊗ΣyiWi + ΣyiWiΞi ./ Wi ri + ΣyiWi〈Z〉T

Adding these together yields

µT
i ⊗

[
(−AΣxiA

T + AΣT
xiyi

+ ΣxiyiA
T −Σyi)

]
Wi

−(AΣxi −Σxiyi) ./ Wi ri

+
[
(AΣxiA

T −AΣT
xiyi

−ΣxiyiA
T + Σyi)WiΞi

]
./ Wi ri

+
[
AΣxiA

T −AΣT
xiyi

−ΣxiyiA
T + Σyi

]
Wi〈Z〉T

= −µT
i ⊗ Iny −Ξi ./ Wi ri + Ξi ./ Wi ri + 〈Z〉T

= −MT
i + 〈Z〉T

Summation then gives for this whole term

Ω−1
∑

i

Wi [−Mi + 〈Z〉]T J−1〈Z〉 = (−〈M〉+ 〈Z〉)T J−1〈Z〉 = −〈E〉TJ−1〈Z〉

The other term is the transpose of this one. So we finally obtain

Σa0 = Ω−1 + 〈Z〉TΣA〈Z〉 − 〈E〉TJ−1〈Z〉 − 〈Z〉TJ−1〈E〉 (105)

Finally, we solve for Σa0,A, the nxny × ny matrix in the lower left of ΣÂ. From (93),

Σa0,A =
∑

i

dA
dxi

�i

[
da0

dxi

]T
=

∑
i

[
dA
dxi

]
�i

[
∂a0

∂x
+

∂a0

∂A
dA
dxi

]T
=

∑
i

∂a0

∂x
�i

[
dA
dxi

]T
+ ΣA

[
∂a0

∂A

]T
. (106)

The first part of this expression is the same as the coefficient of (∂a0/∂A) in the fourth
term in (101). The transpose of this coefficient was worked out in obtaining (105), giving
here −J−1〈E〉. Using also the result for (∂a0/∂A) in (104) we have

Σa0,A = J−1〈E〉 −ΣA〈Z〉. (107)
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