
The Taxman Game

Robert K. Moniot

September 5, 2003

1 Introduction

Want to know how to beat the taxman? Legally, that is? Read on, and we will explore
this cute little mathematical game.

The taxman game is a “golden oldie” computer game. It has been used as an exercise
in introductory programming classes and in books on recreational computing since time
immemorial. (Well, at least since the 1970s. I haven’t been able to determine who
invented it or when.)

Here’s how to play: you start with a pot consisting of all the positive integers up to
some chosen limit, N . You take one, and the taxman gets all the others that divide it
evenly. The number you picked is added to your score, and the numbers the taxman
got are added to his score. This process is repeated until there’s nothing left in the pot.
What makes the game interesting is that the taxman has to get something on every turn,
so you can’t pick a number that has no divisors left. And when none of the numbers
remaining in the pot have any divisors left, the taxman gets them all!

The game is pretty easy to program on a computer, and if programming is one of
your skills, you might want to pause now to do so and play a few games, just to get the
hang of it. Right now we’ll demo a couple of example games with N = 10 to show you
how it goes. First, a game where we try to win by always taking the largest number in
the pot.

Hi! I’m the taxman! Let’s start.
How many numbers in the pot? 10
The available numbers are:
1 2 3 4 5 6 7 8 9 10
Pick one of the numbers: 10
I take: 1 2 5
The available numbers are:
3 4 6 7 8 9
Pick one of the numbers: 9
I take: 3
The available numbers are:
4 6 7 8
Pick one of the numbers: 8
I take: 4
I take: 6 7
All gone. My score = 28, your score = 27
I win.

1



As you can see, it’s not so easy to beat the taxman. You do have an advantage
because each number you take is always bigger than any of the numbers the taxman
takes, and so it’s not hard to get out in front of the taxman and stay there while play
continues. But slowly and silently the unpickable numbers with no divisors left are
accumulating, and suddenly the game ends with the taxman’s score getting a big boost.
If you haven’t accumulated enough of a cushion, he’ll jump ahead and beat you. In
this game, the numbers 6 and 7 ended up with no factors left, so the taxman got them,
boosting his score from 15 to 28.

Still, if you ponder your moves well, it is possible to beat the taxman. This time
we’ll choose more carefully.

Hi! I’m the taxman! Let’s start.
How many numbers in the pot? 10
The available numbers are:
1 2 3 4 5 6 7 8 9 10
Pick one of the numbers: 7
I take: 1
The available numbers are:
2 3 4 5 6 8 9 10
Pick one of the numbers: 9
I take: 3
The available numbers are:
2 4 5 6 8 10
Pick one of the numbers: 6
I take: 2
The available numbers are:
4 5 8 10
Pick one of the numbers: 8
I take: 4
The available numbers are:
5 10
Pick one of the numbers: 10
I take: 5
All gone. My score = 15, your score = 40
You win.

In this game, we limited the taxman’s take to just one number on each move, and no
numbers were left unpickable at the end. It’s not always possible to trounce the taxman
this badly, but it is generally possible to win. Below, we will explore some strategies for
making good picks. We will also see the results of a lengthy computer search for the
best possible sequences of picks for pots of up to 49 numbers.

2 Some basics of strategy

First of all, it is worthwhile noticing that since each of the N numbers originally in the
pot ends up in either the player’s score or the taxman’s score, the sum of the two scores
must equal the sum of the numbers from 1 to N . Therefore the bigger the taxman’s
score, the smaller your score, and vice-versa. This kind of game is called a “zero-sum

2



game,” because the sum of the two players’ final scores, minus a constant that is known
at the start of play, is equal to zero.

The taxman always gets the number 1 and all but at most one of the primes that are
initially in the pot. This is because the number 1 can never be picked, and the only turn
on which the player can pick a prime number is the first turn, when the number 1 is still
in the pot. This gives the taxman a built-in advantage. There is no simple formula for
this advantage, but a crude estimate can be calculated by using the approximation for
the density of primes near x of 1/ lnx. We will skip the details of the calculation, but
the result is that for a pot of size N , the taxman is guaranteed to get roughly 1/ lnN
of the pot just from the leftover primes. This fraction slowly decreases as N increases:
it is about 30% for N = 30, and about 15% for N = 1000.

On the other hand, we can ask what is the absolute best that the player can do in
any game? Since the taxman must get something on every turn, the best you can hope
for is to take just as many numbers as the taxman does. This can only be done for even
N . In that case, the best score is gotten if you take all largest numbers and leave the
smallest ones for the taxman. (We were in fact able to do this in the second example
game played above, with N = 10.) There is a well-known formula giving the sum of the
numbers from 1 to N as N(N +1)/2. So for even N , if the player takes all the numbers
from N

2 + 1 through N , leaving the taxman the numbers 1 through N
2 , a little algebra

shows that the taxman’s score will be N(N + 2)/8. Since the pot is N(N + 1)/2, the
taxman’s take as a fraction of the pot is 1

4
(N+2)
(N+1) . This fraction is always a bit bigger

than 1/4, and gets closer to 1/4 or 25% as N gets larger. This means that the very best
the player can ever do is to get a bit less than 75% of the pot.

2.1 Optimal strategy

An optimal strategy for this game would be a strategy that always gives the player the
largest possible score for a given N (and gives the taxman the least). What can we say
about the optimal strategy?

The best choice for the first pick is not hard to see: simply take the largest prime
number in the pot. We can prove that this is always the best pick as follows. First,
this pick limits the taxman’s take to 1, which the taxman will take on the first move
for any pick. Further, removing this prime, which we will call pmax, and 1 from the
pot does not prevent any sequence of nonprime picks that was originally possible. That
is, if the player could have played by picking the sequence of numbers n1, n2, . . . , nk

where k is the total number of picks and n1 is not prime, then the alternative sequence
pmax, n1, n2, . . . nk is also possible and gives the player a higher score. Picking pmax does
not remove any divisors of n1, n2, . . . , nk other than 1, because pmax cannot divide any
other number in the pot. Its smallest multiple, 2pmax, cannot be in the pot, because
there is a theorem from number theory that says that there is always a prime between
pmax and 2pmax, which would contradict the choice of pmax as the largest prime in the
pot. Since none of the picks in the original sequence is prime, they must therefore all
have other divisors in the pot that will still allow them to be picked.

On the other hand, if n1 is prime and n1 < pmax, then by a similar argument replacing
n1 by pmax does not require any change in the rest of the sequence, and increases the
player’s score by pmax − n1.

From this result, it follows that if N itself is prime, then the optimal sequence of
picks for a pot of size N is the same as for a pot of size N − 1, except that on the first

3



turn we should pick N instead of the next-smaller prime.

3 A heuristic strategy

Beyond the first pick, there don’t seem to be any simple rules for the optimal strategy.
In situations like this, we can often be happy to settle for a strategy that may not be
optimal but will generally give a high score. Such a strategy, which is not proved to
be the best but is sufficiently successful in practice, is called a heuristic. Heuristics can
be based on various principles. For the taxman game, a “greedy” principle yields a
very good heuristic that is easy to apply. A greedy principle is one that says to make
the move that maximizes the short-term gain. For some problems, a greedy strategy
can turn out to be optimal, but in many cases it falls short because of the long-term
consequences. (The same is true of life in general, isn’t it?)

In the first example game we saw a naive greedy heuristic that failed even to win the
game: always picking the largest available number in the pot. This is a bad heuristic
because it ignores the taxman’s take. The game is zero-sum, so the true measure of gain
is not your take alone, but the difference between your take (the value of the number
you pick) and the taxman’s take (the sum of the remaining divisors of the number).

Therefore, a better greedy heuristic for the taxman game is on each turn to pick the
number that maximizes the difference between your pick and the taxman’s take for that
pick. This heuristic is easy to calculate (at least, easy for a computer) and generally
gives a good score.

Trials of the greedy method show that it sometimes overlooks “freebies,” which are
picks that can be taken in between greedy picks without altering the remaining sequence.
The freebies are numbers for which the taxman’s take is a proper subset of his take for
the greedy pick on the same turn. That is, if you picked the freebie, the taxman would
take some, but not all, of the divisors of the greedy pick, so the greedy pick could still
be taken afterward. Thus the greedy pick would either give the freebie to the taxman
or make it unpickable subsequently, whereas picking the freebie before the greedy pick
does not prevent the greedy pick. (The freebie also must not be a divisor of any other
number in the greedy sequence, lest it make that number unpickable.)

For example, when N = 15, after first picking 13, the largest prime, the greedy pick
is 15. The remaining divisors of 15 are 3 and 5. This means that we can pick 9, giving
the taxman 3, and still pick 15, giving the taxman 5. This makes 9 a freebie.

Therefore the greedy method can be improved by scanning for freebies before each
greedy pick, and inserting them into the sequence. We call this the “improved greedy”
heuristic, and it is the best strategy that we have found so far. But is it optimal?
Alas, only sometimes. The experiments described later show that the improved greedy
heuristic often falls short of the optimal score.

4 Search for optimal plays

Since there does not seem to be any simple strategy that guarantees an optimal score,
we programmed a computer to search for the optimal play for any given N . In essence,
the program tries all possible choices for the first pick. Then, based on what is left in
the pot, it tries all permissible choices for the second pick, and so on, continuing each
sequence of picks till the game is ended. Having played all possible games for that N , it

4



prints out a sequence of picks that gives player the best score. (Here, I say “a sequence”
rather than “the sequence” because there can be different sequences that achieve the
same score.)

This type of approach is called a “brute-force search” because it simply tries all possi-
bilities. Usually, when trying to find an optimal solution to a problem, you should apply
as much mathematical analysis as possible first, in order to find a strategy that homes in
directly on the solution. A brute-force search usually requires a lot of computing power,
so that it may be impractical for large problems.

Our search was organized as a “tree search,” in which it is thought of as exploring
the branches of a tree. The trunk of the tree is the starting point, when all the numbers
from 1 to N are in the pot. Then each of the main branches of the tree represents one
of the possible choices for the first pick. Having chosen one of these main branches,
further branches represent the available choices at each step. After traversing a number
of branches, the search eventually reaches a leaf, where a game ends. The search then
backs up to the last branch point and picks another branch to follow. When all the
branches from that point have been explored, it backs up further and tries another
branch closer to the trunk. This process is repeated until all the branches have been
explored and every leaf has been visited.

4.1 Time complexity

As N gets bigger, the brute-force search takes an ever-longer time to explore the whole
tree of possibilities and find the optimal score. Let’s call the number of possible pick
sequences S(N). This number grows rapidly as N increases. The rate of growth of S(N)
is called the “time complexity” of the brute-force search method, since it determines how
many possibilities the program has to examine in order to arrive at the answer. The
term “complexity” in computer science is used to describe the level of difficulty of solving
a given class of problems. A linear rate of growth, where the complexity is proportional
to N , means the problem is easy and can be readily solved even for large values of N .
Unfortunately, our S(N) grows very rapidly, limiting the maximum value of N for which
a solution can be found in a reasonable time.

We can easily see that S(N) grows less rapidly than N ! because, although we have
almost N possible choices for the first pick, after the first pick there are fewer than
S(N − 1) sequences for the rest of the game. Still, this line of thinking suggests that
S(N) probably grows more quickly than an exponential function such as 2N , since the
number of sequences usually more than doubles as N is increased by 1.

We used our search program to count S(N) for pot sizes up to N = 35. The
result is shown in Figure 1 (filled circles). Notice that the vertical scale of the graph is
logarithmic. On this kind of graph, an exponential curve would be a straight line. The
upward curvature of the trend in the figure shows that S(N) grows somewhat faster
than exponentially.

4.2 Improving the brute-force search

The straightforward tree search is too lengthy to solve for the optimal play for pots
bigger than about N = 40. So the program was improved to “prune the tree.” This
pruning is done by keeping track of the unpickable numbers, those whose divisors are
already taken. These numbers already belong to the taxman, although they are still in
the pot. By adding these numbers to the taxman’s score, the program can tell when it

5



S(N)

5 10 15 20 25 30 35 40
101

102

103

104

105

106

107

108

109

1010

1011

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a aq without pruninga with pruning

N

Figure 1: Number S(N) of pick sequences as a function of initial pot size N , with and
without pruning.

is impossible for the player to do better than the best score that has already been found,
and abandon that branch of the tree. The program uses the score from the improved
greedy heuristic as an initial target, and replaces this by any higher score that is found
later on. The improvement with pruning is shown by the open circles in Figure 1. The
reduction in the number of sequences examined is by a factor of nearly 1000 for N = 35.
Still, even with pruning, the number of possibilities that need to be checked follows a
trend that increases faster than exponentially with N .

To speed the search still further, the program uses the proven optimal strategy for
the first pick: instead of trying all numbers from 2 to N , the program starts by picking
the largest prime in the pot. This prunes away all the first branches of the tree except
one.

The program also skips the search entirely whenever N is prime. As shown earlier,
the optimal play for prime N is easily found from the optimal play for N − 1.

5 Results of the search

The search for the optimal sequence of picks was carried out for all pots up to N = 49
before I reached the limit of my computing resources. (Most of the search was done
over a period of about 5 years on a Pentium 90 running the Linux operating system,
with the final cases being done on a 1.8 GHz Pentium Linux system in a few additional
months. For the case N = 49, the search needed to examine more than 3×1012 possible
sequences.) The results are given in the Appendix.

One interesting question that we can look at using these results is: how often can we
achieve the absolute best score, in which we take all the numbers in the upper half of

6



the pot? The search shows that this is possible only for the cases N = 2, 4, 6, and 10.
For N = 8, and for all N above 10, there are at least two primes in the upper half of
the pot, so the taxman always gets at least one of them. For N = 10, the player’s score
is 40/55 ≈ 73% of the pot. This is close to the upper limit of 75% derived in section 2.
It is probably the best score, as a fraction of the pot, that can be achieved for any pot
size.

Another question is: how well does the improved greedy heuristic do as compared
to the optimal play? The results show that the heuristic fails to yield the optimal play
for about half the cases solved. Still, it always does a good job. Since the improved
greedy heuristic can be calculated quickly, I explored how well it does out to N = 1000.
In this range, it always makes the optimal first pick and it always wins (except for the
case N = 3 in which the optimal score is a tie). On average, it gives the player 60% of
the pot.

If you look closely at the experimental results you can see an interesting feature:
the optimal second pick is almost always the largest square of a prime. The only cases
where this pick is not optimal are N = 8 and N = 20. (Some of the sequences could be
rearranged to pick it later than second and still get the same score.)

6 Open questions

There are many questions about the taxman game that I haven’t been able to answer.
Here are a few.

• Does the greedy heuristic always make the optimal first pick, namely the largest
prime? It seems likely that it does, since the largest prime is usually one of the
biggest numbers in the pot, and so the difference between it and 1 (the taxman’s
take for that pick), is going to be hard to beat. I have tested it out to N = 500, 000
without finding any cases where it fails to make the correct first pick. Still, I don’t
have a downright proof.

• Is there a simple winning strategy for the game? This would be a strategy that is
guaranteed to win every time. The improved greedy heuristic is a good candidate,
and tests show that it wins all games up to N = 1000, but I have not proved that
it always wins.

• Is the choice of the largest squared prime as the second pick optimal for all N
above 20? If not, how can we identify the values of N for which it is not?

• We saw how the optimal play for prime N can be based on the optimal play for
N − 1. Are there any other cases for which the optimal play for one pot size can
be used to find the optimal play for another? The experiments show that very
often the optimal sequences for successive N are quite similar, but there isn’t an
obvious systematic way to relate them.

If you can answer any of these questions, be sure to let me know. Perhaps you can also
think of some interesting questions of your own! In any case, I hope you have had fun
exploring with me how to beat the taxman!

7



7 Appendix

Listing of pick sequences found by brute-force search program. The table lists the
improved greedy sequence first, with the “freebies” in boldface, followed by the optimal
sequence, if different, on the next line.

N Score Sequence

2 2 2

3 3 3

4 7 3 4

5 9 5 4

6 15 5 4 6

7 17 7 4 6

8 21 7 8 6

9 30 7 9 6 8

10 40 7 9 6 10 8

11 44 11 9 6 10 8

12 48 11 9 6 12 10
50 11 9 10 8 12

13 50 13 9 6 12 10
52 13 9 10 8 12

14 66 13 9 14 10 8 12

15 81 13 9 15 10 14 8 12

16 89 13 9 15 10 14 16 12

17 93 17 9 15 10 14 16 12

18 102 17 15 10 14 16 12 18
111 17 9 15 10 18 14 12 16

19 104 19 15 10 14 16 12 18
113 19 9 15 10 18 14 12 16

20 124 19 15 10 20 16 14 12 18

21 135 19 21 14 15 20 16 12 18
144 19 9 21 15 14 18 12 20 16

22 157 19 21 14 22 15 20 16 12 18
166 19 9 21 15 14 22 18 12 20 16

8



N Score Sequence

23 161 23 21 14 22 15 20 16 12 18
170 23 9 21 15 14 22 18 12 20 16

24 173 23 21 14 22 15 20 16 24 18
182 23 9 21 15 14 22 20 18 16 24

25 198 23 25 15 21 14 22 20 16 24 18

26 224 23 25 15 21 14 26 22 20 16 24 18

27 247 23 25 15 27 21 14 26 18 22 12 24 20
251 23 25 15 27 21 14 26 22 20 18 16 24

28 279 23 25 15 27 21 14 28 26 18 22 20 16 24

29 285 29 25 15 27 21 14 28 26 18 22 20 16 24

30 300 29 25 27 21 14 28 26 18 22 20 30 16 24
301 29 25 26 22 15 27 21 18 30 20 28 16 24

31 302 31 25 27 21 14 28 26 18 22 20 30 16 24
303 31 25 26 22 15 27 21 18 30 20 28 16 24

32 318 31 25 27 21 14 28 26 18 22 20 30 32 24
319 31 25 26 22 15 27 21 18 30 20 32 28 24

33 337 31 25 33 22 27 21 26 18 28 20 30 32 24
352 31 25 15 33 27 22 26 21 18 30 20 32 28 24

34 371 31 25 33 22 27 34 21 26 18 28 20 30 32 24
386 31 25 15 33 27 22 34 26 21 18 30 20 32 28 24

35 406 31 25 35 21 33 22 27 34 26 18 28 20 30 32 24
418 31 25 35 21 33 27 22 34 26 18 12 28 24 32 20 30

36 442 31 25 35 21 33 22 27 34 26 18 36 24 32 28 20 30

37 448 37 25 35 21 33 22 27 34 26 18 36 24 32 28 20 30

38 486 37 25 35 21 33 22 38 27 34 26 18 36 24 32 28 20 30

39 478 37 39 26 21 35 33 38 27 34 18 36 24 32 28 20 30
503 37 25 35 21 39 33 27 26 38 34 28 20 18 36 30 24 32

40 498 37 39 26 21 35 33 38 27 34 18 36 24 32 28 40 30
525 37 25 35 21 39 33 27 26 38 34 30 20 40 32 28 24 36

41 502 41 39 26 21 35 33 38 27 34 18 36 24 32 28 40 30
529 41 25 35 21 39 33 27 26 38 34 30 20 40 32 28 24 36

42 548 41 39 26 25 35 33 38 27 34 18 36 24 32 28 42 40 30
571 41 25 35 21 39 33 27 26 42 38 34 28 20 40 32 30 24 36

9



N Score Sequence

43 550 43 39 26 25 35 33 38 27 34 18 36 24 32 28 42 40 30
573 43 25 35 21 39 33 27 26 42 38 34 28 20 40 32 30 24 36

44 596 43 39 26 25 35 33 38 44 27 34 28 42 20 40 32 30 24 36
617 43 25 35 21 39 33 27 26 44 38 34 28 42 20 40 32 30 24 36

45 621 43 39 26 25 35 33 27 45 38 44 34 30 28 42 40 32 24 36
660 43 25 35 21 39 33 27 45 26 38 34 18 42 30 28 44 36 24 40 32

46 667 43 39 26 46 25 35 33 27 45 38 44 34 30 28 42 40 32 24 36
706 43 25 35 21 39 33 27 45 26 46 38 34 18 42 30 28 44 36 24 40 32

47 671 47 39 26 46 25 35 33 27 45 38 44 34 30 28 42 40 32 24 36
710 47 25 35 21 39 33 27 45 26 46 38 34 18 42 30 28 44 36 24 40 32

48 695 47 39 26 46 25 35 33 27 45 38 44 34 30 28 42 40 32 48 36
734 47 25 35 21 39 33 27 45 26 46 38 34 18 42 30 28 44 40 36 32 48

49 719 47 49 35 39 26 46 33 27 45 38 44 34 30 28 42 40 32 48 36
758 47 49 35 21 39 33 27 45 26 46 38 34 18 42 30 28 44 40 36 32 48

10


