Chapter 5
Errors

Bjarne Stroustrup
www.stroustrup.com/Programming

Abstract
• When we program, we have to deal with errors. Our most basic aim is correctness, but we must deal with incomplete problem specifications, incomplete programs, and our own errors. Here, we’ll concentrate on a key area: how to deal with unexpected function arguments. We’ll also discuss techniques for finding errors in programs: debugging and testing.

Overview
• Kinds of errors
• Argument checking
 • Error reporting
 • Error detection
 • Exceptions
• Debugging
• Testing

Errors
• “... I realized that from now on a large part of my life would be spent finding and correcting my own mistakes.”
 • Maurice Wilkes, 1949
• When we write programs, errors are natural and unavoidable; the question is, how do we deal with them?
 • Organize software to minimize errors.
 • Eliminate most of the errors we made anyway.
 • Make sure the remaining errors are not serious.
• My guess is that avoiding, finding, and correcting errors is 95% or more of the effort for serious software development.
 • You can do much better for small programs, or worse, if you’re sloppy.

Your Program
1. Should produce the desired results for all legal inputs
2. Should give reasonable error messages for illegal inputs
3. Need not worry about misbehaving hardware
4. Need not worry about misbehaving system software
5. Is allowed to terminate after finding an error

3, 4, and 5 are true for beginner’s code; often, we have to worry about those in real software.

Sources of errors
• Poor specification
 • “What’s this supposed to do?”
• Incomplete programs
 • “I’ll not get around to doing that until tomorrow”
• Unexpected arguments
 • “but sqrt() isn’t supposed to be called with -1 as its argument”
• Unexpected input
 • “but the user was supposed to input an integer”
• Code that simply doesn’t do what it was supposed to do
 • “no fix?”
Kinds of Errors

- Compile-time errors
- Syntax errors
- Type errors
- Link-time errors
- Run-time errors
- Detected by compiler (crash)
- Detected by binary (exceptions)
- Detected by use-code
- Logic errors
- Detected by programmer (code runs, but produces incorrect output)

Check your inputs

- Before trying to use an input value, check that it meets your expectations/requirements
 - Function arguments
 - Data from input (stdin)

Bad function arguments

- The compiler helps:
 - Number and types of arguments must match

```c
int area(int length, int width) {
    return length * width;
}
```

```c
int x1 = area(7);
// error: wrong number of arguments
```

```c
int x2 = area("seven", 2);
// error: 1st argument has a wrong type
```

```c
int x3 = area(7, 10);
// ok
```

```c
int x5 = area(7.5, 10);
// ok, but dangerous: 7.5 truncated to 7; most compilers will warn you
```

```c
int x = area(10, -7);
// this is a difficult case:
    the types are correct,
    but the values make no sense
```

Bad Function Arguments

- So, how about
  ```c
  int x = area(10, -7);
  ```

- Alternatives
 - Just don't do that
 - Rarely a satisfactory answer
 - The caller should check
 - Hard to do systematically
 - The function should check
 - Return an "error value" (not general, problematic)
 - Set an error status indicator (not general, problematic - don't do this)
 - Throw an exception

Note: sometimes we can't change a function that handles errors in a way we do not like
- Someone else wrote it and we can't or don't want to change their code

Bad function arguments

- Why worry?
 - You want your programs to be correct
 - Typically the writer of a function has no control over how it is called
 - Writing "do it this way" in the manual (or in comments) is no solution - many people don't read manuals
 - The beginning of a function is often a good place to check
 - Before the computation gets complicated
 - When to worry?
 - If it doesn't make sense to test every function, test some

How to report an error

- Return an "error value" (not general, problematic)
  ```c
  int area(int length, int width) {
      return length * width;
  }
  ```

```c
int x = area(10, 10);
// return a negative value for bad input
```

```c
if(length <=0 || width <= 0) return -1;
return length*width;
```

```c
if (z<0) error("bad area computation");
```

Problems

- What if I forget to check that return value?
 - For some functions there isn't a "bad value" to return (e.g., max())
How to report an error

- Set an error status indicator (not general, problematic, don’t!)
  ```c
  int errno = 0; // used to indicate errors
  int area(int length, int width) {
    if (length<=0 || width<=0) errno = 7; // || means or
    return length*width;
  }
  ```
- So, "let the caller check"
  ```c
  int z = area(x,y);
  if (errno==7) error("bad area computation");
  ```

Problems
- What if I forget to check errno?
- How do I pick a value for errno that’s different from all others?
- How do I deal with that error?

Report an error by throwing an exception

```c
class Bad_area { }; // a class is a user defined type
int area(int length, int width) {
  if (length<=0 || width<=0) throw Bad_area{}; // note the {} – a value
  return length*width;
}
```

Catch and deal with the error (e.g., in main())

```c
try {
  int z = area(x,y);
} // make the assignment and proceed
```
```c
catch(Bad_area) {
  cerr << "oops! Bad area calculation – fix program"
;}
```

Exceptions

- Exception handling is general
  ```c
  #include "std_lib_facilities.h"
  ```

Out of range

- Try this
  ```c
  vector<int> v(10); // a vector of 10 ints,
  // each initialized to the default value, 0,
  // referred to as v[0]..v[9]
  for (int i = 0; i<v.size(); ++i) v[i] = i;
  ```
- vector’s operator[] (subscript operator) reports a bad index (its argument) by throwing a Range_error if you use
  ```c
  for (int i = 0; i<=10; ++i) // print 10 values (???)
    cout << "v[" << i << "] == " << v[i] << endl;
  ```

Exceptions – for now

- For now, just use exceptions to terminate programs gracefully, like this
  ```c
  int main() {
    try {
    ...
    catch (out_of_range&) {
      cerr << "oops – some vector index out of range"
    } catch (…) {
      cerr << "oops – some exception"
    }
  }
  ```

A function error()
Using `error()`

- Example
  ```cpp
cout << "please enter integer in range [1..10]"
int x = -1;  // initialize with unacceptable value (if possible)
cin >> x;    // check that cin read an integer
erreur("didn't get a value")
if (x < 1 || x > 10)  // check if value is out of range
erreur("x is out of range")
if we get this far, we can use x with confidence
```

How to look for errors

- When you have written (drafted?) a program, it’ll have errors (commonly called “bugs”)
 - It’ll do something, but not what you expected
 - How do you find out what it actually does?
 - How do you correct it?
 - This process is usually called “debugging”

Debugging

- How not to do it
  ```cpp
  while (program doesn’t appear to work) {  // pseudo code
    Randomly look at the program for something that “looks odd”
    Change it to “look better”
  }
  ```

- Key question
 How would I know if the program actually worked correctly?

Program structure

- Make the program easy to read so that you have a chance of spotting the bugs
 - Comment
 - Explain design ideas
 - Use meaningful names
 - Indent
 - Use a consistent layout
 - Your IDE tries to help (but it can’t do everything)
 - Feel free to reorganize
 - Break code into small functions
 - Try to avoid functions longer than a page
 - Avoid complicated code sequences
 - Try to avoid nested loops, nested if-statements, etc.
 (but, obviously, you sometimes need those)
 - Use library facilities

First get the program to compile

- Is every string literal terminated?
  ```cpp
cost << "Hello, " << name << " Hi"  // oops?
```

- Is every character literal terminated?
  ```cpp
cost << "Hello, "  // name << "Hi"  // oops?
```

- Is every block terminated?
  ```cpp
if (x>0)  
else    
```  // oops?

- Is every set of parentheses matched?
  ```cpp
if (x  
```  // oops?

- The compiler generally reports this kind of error “hate”
  ```cpp
It doesn’t know `iostream/iostream.h" line
```

First get the program to compile

- Is every name declared?
  ```cpp
Did you include needed headers? (e.g., `std_lib_facilities.h`)
```

- Is every name declared before it’s used?
  ```cpp
Did you spell all names correctly?
```

- Did you terminate each expression statement with a semicolon?
  ```cpp
x = sqrt(y)+2  // oops!
```
Debugging

- Carefully follow the program through the specified sequence of steps
 - Pretend you're the computer executing the program.
 - Does the output match your expectations?
 - If there isn't enough output to help, add a few debug output statements.
- Be very careful
 - See what the program specifies, not what you think it should say
 - That's much harder to do than it sounds
 - for (int i=0; i<month.size(); ++i) {
 //
 // oops!
 }
 - Be very careful
 - See what the program specifies, not what you think it should say
 - for (int i = 0; i<=max; ++j) {
 //
 // oops! (twice)
 }
- Function argument checks are prominent examples of this
 - if (number_of_elements<0) error("impossible: negative number of elements");
 - if (largest_reasonable<number_of_elements) error("unexpectedly large number of elements");
 - if (x<y) error("impossible: x<y");
- Design these checks so that some can be left in the program even after you believe it to be correct
 - It's almost always better for a program to stop than to give wrong results.

Pay special attention to "end cases" (beginnings and ends)
- Did you initialize every variable?
 - To a reasonable value
- Did the function get the right arguments?
- Did you handle the first element correctly?
- Did you handle the empty case correctly?
 - No elements
 - No input
- Did you open your files correctly?
- Did you actually read that input?
- Write that output?

"If you can't see the bug, you're looking in the wrong place"
- It's easy to be convinced that you know what the problem is and stubbornly keep looking in the wrong place
- Don't just guess, be guided by output
 - Work forward through the code from a place you know is right so what happens next? Why?
 - Work backwards from some bad output
 - How could that possibly happen?
- Once you have found "the bug" carefully consider if fixing it solves the whole problem
 - It's common to introduce new bugs with a "quick fix."
- "I found the last bug" is a programmer's joke

Note

- Error handling is fundamentally more difficult and messy than ordinary code
 - There is basically just one way things can work right
 - There are many ways that things can go wrong
- The more people use a program, the better the error handling must be:
 - If you break your own code, that's your own problem
 - You'll learn the hard way
 - If your code is used by your friends, uncaught errors can cause you to lose friends
 - If your code is used by strangers, uncaught errors can cause serious grief
 - And they may not have a way of recovering

What does a function require of its arguments?
- Such a requirement is called a pre-condition
- Sometimes, it's a good idea to check it

```c++
int area(int length, int width) // calculate area of a rectangle
  if (length<0 || width<0) throw Bad_area{};
  return length*width;
```
Post-conditions

- What must be true when a function returns?
- Such a requirement is called a post-condition

```c
int area(int length, int width) { // calculate area of a rectangle
    // length and width must be positive
    if (length<=0 || width <=0) throw Bad_area();
    // the result must be a positive int that is the area
    // no variables had their values changed
    return length*width;
}
```

Pre- and post-conditions

- Always think about them
- If nothing else write them as comments
- Check them “where reasonable”
- Check a lot when you are looking for a bug
- This can be tricky
 - How could the post-condition for area() fail after the pre-condition succeeded (held)?

Testing

- How do we test a program?
 - Be systematic
 - “pecking at the keyboard” is okay for very small programs and for very initial tests, but is insufficient for real systems
 - Think of testing and correctness from the very start
 - When possible, test parts of a program in isolation
 - E.g., when you write a complicated function write a little program that simply calls it with a lot of arguments to see how it behaves in isolation before putting it into the real program (this is typically called “unit testing”)
 - We’ll return to this question in Chapter 26

The next lecture

- In the next two lectures, we’ll discuss the design and implementation of a complete small program – a simple “desk calculator.”