Outline

CISC 1400 Discrete Structures Chapter 1

Sets

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

Basic definitions

- Naming and describing sets
- Comparison relations on sets
- Set operations
- Principle of Inclusion/Exclusion

1/122

Sets

- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
 - {a,b,c,d,e,f}
 - {Arizona, California, Massachusetts, 42, 47}
- A set may contain other sets as elements:

 $\{1, 2, \{1, 2\}\}$

- The empty set $\emptyset = \{\}$ contains no elements
- Can use variables (usually upper case letters) to denote sets

 Universal set (generally denoted U): contains all elements we might ever consider (only consider what matters)

Enumerating the elements of a set

Order doesn't matter

 $\{1, 2, 3\} = \{3, 1, 2\}$

Repetitions don't count

 $\{a, b, b\} = \{a, b\}$

(better yet: don't repeat items in a listing of elements)

 $C = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$

Element notation

If A is a set, then

- ► $x \in A$ means "x is an element of A"
- x ∉ A means "x is not an element of A"

So

- e ∈ {a, e, i, o, u}
- *f* ∉ {*a*, *e*, *i*, *o*, *u*}

Some well-known sets

- Pretty much standard notations:
 - ▶ $\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$: the set of *natural numbers* (non-negative integers).
 - \blacktriangleright $\mathbb{Z} = \{... 3, -2, -1, 0, 1, 2, ...\}$: the set of all *integers*.
 - Q: the set of all *rational numbers* (fractions).
 - $\blacktriangleright \mathbb{R}: \text{the set of all } real \text{ numbers.}$
- Less standard (but useful) notations:
 - \triangleright \mathbb{Z}^+ is the set of positive integers.
 - $\triangleright \mathbb{Z}^-$ is the set of negative integers.
 - $\blacktriangleright \mathbb{Z}^{\geq 0}$ is the same as \mathbb{N} .
 - \blacktriangleright $\mathbb{R}^{>7}$ is the set of all real numbers greater than seven.

5/122

Set builder notation

Rather than listing all the elements

 $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}$

(inconvenient or essentially impossible), describe sets via a property

$A = \{x : p(x) \text{ is true}\}$

Examples:

 $\mathbb{N} = \{x \mid x \in \mathbb{Z} \text{ and } x \ge 0\}$ $\mathbb{N} = \{x : x \in \mathbb{Z} \text{ and } x \ge 0\}$ $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$ $\mathbb{N} = \{x \in \mathbb{Z} : x \ge 0\}$

Set builder notation (cont'd)

More examples:

$$\{x \in \mathbb{Q} : 2x = 7\} = \{3.5\}$$

$$\{x \in \mathbb{Z} : 2x = 7\} = \emptyset$$

$$\{2x \mid x \in \mathbb{Z}\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

$$\{x \in \mathbb{N} : \frac{1}{3}x \in \mathbb{Z}\} = \{0, 3, 6, 9, \dots\}$$

$$\{x \in \mathbb{R}^{\ge 0} : x^2 = 2\} = \{\sqrt{2}\}$$

$$\{x \in \mathbb{Q}^{\ge 0} : x^2 = 2\} = \emptyset$$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
 - ▶ $\{1, 3, 5\} \subseteq \{1, 2, 3, 4, 5\}$
 - $\blacktriangleright \{1, 2, 3, 4, 5\} \subseteq \{1, 2, 3, 4, 5\}$
 - ▶ {1,3,6} ⊈ {1,2,3,4,5}
 - A \subseteq A for any set A
 - $\emptyset \subseteq A$ for any set A
- A is a proper subset of B (written " $A \subset B$ ") if $A \subseteq B$ and $A \neq B$.
 - $\blacktriangleright \{1,3,5\} \subset \{1,2,3,4,5\}$
 - ► {1, 2, 3, 4, 5} ⊄ {1, 2, 3, 4, 5}
- ▶ \subset vs. \subseteq is somewhat like < vs. \leq

Element vs. subset

- ▶ ∈ means "is an element of"
- ▶ \subseteq means "is a subset of"

 $A \subseteq B$ means if $x \in A$ then $x \in B$

Examples: Let

 $A = \{$ purple, blue, orange, red $\}$ and $B = \{$ blue $\}$.

Fill in the missing symbol from the set $\{\in, \notin, \subseteq, \subset, \not\subseteq, =, \neq\}$ to correctly complete each of the following statements:

9/122

Venn Diagram

Diagram for visualizing sets and set operations

When necessary, indicate universal set via rectangle surrounding the set circles.

Venn Diagram (cont'd)

For example, might have

 $A = \{$ Fordham students who've taken CISC 1400 $\}$

 $B = \{$ Fordham students who've taken CISC 1600 $\}$

 $C = \{$ Fordham students who've taken ECON 1100 $\}$

Set operations: Cardinality

The number of elements in a set is called its *cardinality*. We denote the cardinality of S by |S|.

- Let $A = \{a, b, c, d, e, z\}$. Then |A| = 6.
- ► |{*a*, *e*, *i*, *o*, *u*}| = 5.
- $\blacktriangleright |\emptyset| = 0.$
- ► $|\{a, \{b, c\}, d, \{e, f, g\}, h\}| = 5.$

Set operations: Union

Set of all elements belonging to *either* of two given sets:

13/122

Let $A = \{1, 2, 3, 4, 5\}$ $B = \{0, 2, 4, 6, 8\}$ $C = \{0, 5, 10, 15\}$ Then $A \cup B = \{0, 1, 2, 3, 4, 5, 6, 8\}$ $B \cup A = \{0, 1, 2, 3, 4, 5, 6, 8\}$ $B \cup C = \{0, 2, 4, 5, 6, 8, 10, 15\}$ $(A \cup B) \cup C = \{0, 1, 2, 3, 4, 5, 6, 8, 10, 15\}$ Let $L = \{e, g, b, d, f\}$ $S = \{f, a, c, e\}$

Set operations: Union (examples)

Then

$$L \cup S = \{a, b, c, d, e, f, g\}$$

Set operations: Intersection

Set of all elements belonging to *both* of two given sets:

Note: We say that two sets are *disjoint* if their intersection is empty.

Set operations: Intersection (examples) Let $A = \{1, 2, 3, 4, 5\}$ $B = \{0, 2, 4, 6, 8\}$ $C = \{0, 5, 10, 15\}$ Then $A \cap B = \{2, 4\}$ $B \cap A = \{2, 4\}$ $B \cap C = \{0\}$ $(A \cap B) \cap C = \emptyset$ Let $L = \{e, g, b, d, f\}$ $S = \{f, a, c, e\}$ Then $L \cap S = \{e, f\}$

17/122

Set operations: Difference

Note that

Set of all elements belonging to one set, but not another:

18/122

Set operations: Difference (examples)

Let

 $A = \{1, 2, 3, 4, 5\}$ $B = \{0, 2, 4, 6, 8\}$ $C = \{0, 5, 10, 15\}$

Then

 $A - B = \{1, 3, 5\}$ $B - A = \{0, 6, 8\}$ $B - C = \{2, 4, 6, 8\}$ $C - B = \{5, 10, 15\}$ $(A - B) \cap (B - A) = \emptyset$ (Are you surprised by this?)

Set operations: Complement

Set of all elements (of the universal set) that do *not* belong to a given set:

$$A' = U - A.$$

Venn diagrams dealing with complements generally use a surrounding rectangle to indicate the universal set *U*:

If U and A are finite sets, then

$$|A'| = |U - A| = |U| - |A|.$$

Set operations: Complement (examples)

Let

 $U = \{$ red, orange, yellow, green, blue, indigo, violet $\}$ $P = \{$ red, green, blue $\}$

Then

P' = {orange, yellow, indigo, violet}

► Let *E* and *O* respectively denote the sets of even and odd integers. Suppose that our universal set is Z. Then

$$E' = O$$
$$O' = E$$

Set operations: Power Set

Set of all subsets of a given set

$$B \in \mathscr{P}(A)$$
 if and only if $B \subseteq A$

$$\begin{aligned} \mathscr{P}(\emptyset) &= \{\emptyset\} \\ \mathscr{P}(\{a\}) &= \{\emptyset, \{a\}\} \\ \mathscr{P}(\{a, b\}) &= \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \\ \mathscr{P}(\{a, b, c\}) &= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \\ \end{aligned}$$
How many elements does $\mathscr{P}(A)$ have?

 $|\mathscr{P}(A)| = 2^{|A|},$

i.e.,

if
$$|A| = n$$
, then $|\mathscr{P}(A)| = 2^n$.

21/122

Some basic laws of set theory

Here, U is a universal set, with $A, B, C, S \subseteq U$.

Name	Law
Identity	$S \cap U = S$
Identity	$S \cup \emptyset = S$
Complement	$S \cap S' = \emptyset$
Complement	$S \cup S' = U$
Double Complement	(S')' = S
Idempotent	$S \cap S = S$
ldempotent	$S \cup S = S$
Commutative	$A \cap B = B \cap A$
Commutative	$A \cup B = B \cup A$

Some basic laws of set theory (cont'd)

Once again, U is a universal set, with $A, B, C, S \subseteq U$.

Name	Law
Associative	$(A \cap B) \cap C = A \cap (B \cap C)$
Associative	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
DeMorgan	$(A \cap B)' = A' \cup B'$
DeMorgan	$(A \cup B)' = A' \cap B'$
Equality	$A = B$ if and only if $A \subseteq B$ and $B \subseteq A$
Transitive	if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Set operations: Cartesian Product

Set operations: Cartesian Product (examples)

- Ordered pair: Pair of items, in which order matters.
 - ▶ (1,2)...not the same thing as (2,1)
 - (red, blue)
 - ▶ (1, green)
- Cartesian product (also known as set product): Set of all ordered pairs from two given sets, i.e.,

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

Let

 $A = \{1, 2, 3\}$ $B = \{a, b, c\}$ $C = \{-1, 5\},$

Then ...

 $\begin{aligned} A \times B &= \{ (1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c) \} \\ B \times A &= \{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3) \} \\ C \times A &= \{ (-1, 1), (-1, 2), (-1, 3), (5, 1), (5, 2), (5, 3) \} \\ B \times C &= \{ (a, -1), (a, 5), (b, -1), (b, 5), (c, -1), (c, 5) \} \end{aligned}$

Note the following:

- $\blacktriangleright A \times B \neq B \times A \text{ (unless } A = B)$
- ► $|A \times B| = |A| \cdot |B|$ (that's why it's called "product").

25/122

Principle of Inclusion/Exclusion

Suppose you run a fast-food restaurant. After doing a survey, you find that

- > 25 people like ketchup on their hamburgers,
- 35 people like pickles on their hamburgers,
- 15 people like both ketchup and pickles on their hamburgers.

How many people like either ketchup *or* pickles (maybe both) on their hamburgers?

Let $K = \{ people who like ketchup \}$ and

 $P = \{ people who like pickles \}.$ Then

$$|K| = 25$$
 $|P| = 35$ $|K \cap P| = 15$

Principle of Inclusion/Exclusion

Since we don't want to count $K \cap P$ twice, we have

 $|K \cup P| = |K| + |P| - |K \cap P| = 25 + 35 - 15 = 45.$

Set operations: cardinalities of union and intersection

Inclusion/exclusion principle:

$$|A \cup B| = |A| + |B| - |A \cap B$$

► If A and B are disjoint, then

$$A \cup B| = |A| + |B|$$

- See the example that animates this concept.
- What about three sets (hamburger eaters who like ketchup, pickles, and tomatoes)?

29/122

Principle of Inclusion/Exclusion

For three sets:

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$

30/122

Principle of Inclusion/Exclusion

Let *K*, *P*, *T* represent the sets of people who like ketchup, pickles, and tomatoes on their hamburgers. Suppose that

$$|K| = 20$$
 $|P| = 30$ $|T| = 45$
 $|K \cap P| = 10$ $|K \cap T| = 12$ $|P \cap T| = 13$
 $|K \cap P \cap T| = 8.$

Then

$$K \cup P \cup T| = |K| + |P| + |T| - |K \cap P| - |K \cap T| - |P \cap T| + |K \cap P \cap T|$$
$$= 20 + 30 + 45 - 10 - 12 - 13 + 8$$
$$= 68$$