General info

CISC 1400

Discrete Structures

Review Topics

Final Exam

Arthur G. Werschulz
Fordham University
Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

- Date: Thursday 27 June, 1:00 p.m. to 3:00 p.m.
- Mainly on Chapters 5-9
- Graded on a 100-point basis, but with 110 points' worth of questions.
- Questions based on exercises on text (either assigned or unassigned)
- One double-sided $8 \frac{1}{2} \times 11$-inch sheet of notes
- Unless told otherwise, complete all arithmetic operations. You do not need to convert fractions (such as $\frac{1234}{5678}$) into decimals.
- You should take the practice final as part of your study.

Chapter 5: Functions

- A function $f: X \rightarrow Y$ is a special kind of relation on $X \times Y$.
- Terminology
- domain
- codomain
- range
- rule or description
- Composite functions
- The identity function
- Properties of a function
- injective
- surjective
- bijective
- Inverse functions
- A function is invertible iff it is bijective
- Finding the inverse of a simple function

Chapter 6: Counting

- Using a table
- Using a tree
- Elementary rules for counting
- addition rule
- multiplication rule
- using the addition and multiplication rules together
- Permutations and combinations
- computing permutations $P(n, r)$
- computing combinations $C(n, r)$
- computing permutations with repetitions
- Word problems
- Kinds of problems include
- license plates
- phone numbers
- dice
- cards
- lotteries
- ... and so forth
- Which rule(s) to apply?

Chapter 7: Probability

- Basic definition: $\operatorname{Prob}(E)=|E| /|S|$ for "equally-likely" case
- Counting $|S|,|E|$
- directly
- using counting rules from Chapter 5
- Probability of complementary event

$$
\operatorname{Prob}\left(E^{\prime}\right)=1-\operatorname{Prob}(E)
$$

- Elementary rules
- Independent and disjoint events
- Addition rule for disjoint events

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)
$$

- Multiplication rule for independent events:

$$
\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2}\right)
$$

Chapter 7: Probability (cont'd)

- Bernoulli trials: if the probability of an event is p, then the probability of the event happening k times out of n trials is $C(n, k) p^{k}(1-p)^{n-k}$.
- Expected value of an event with outcomes $O_{1}, O_{2}, \ldots, O_{n}$ is

$$
\begin{aligned}
& \sum_{j=1}^{n} O_{j} \cdot \operatorname{Prob}\left(O_{j}\right)= \\
& \quad O_{1} \cdot \operatorname{Prob}\left(O_{1}\right)+O_{2} \cdot \operatorname{Prob}\left(O_{2}\right)+\cdots+O_{n} \cdot \operatorname{Prob}\left(O_{n}\right) .
\end{aligned}
$$

- Word problems
- Kinds of problems include
- lotteries
- dice
- cards
- ... and so forth
- Which rule to apply?

Chapter 7: Probability (cont'd)

- General addition rule

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right)
$$

- General rules
- General addition rule

$$
\operatorname{Prob}\left(E_{1} \cup E_{2}\right)=\operatorname{Prob}\left(E_{1}\right)+\operatorname{Prob}\left(E_{2}\right)-\operatorname{Prob}\left(E_{1} \cap E_{2}\right)
$$

- Conditional probability

$$
\operatorname{Prob}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Prob}\left(E_{1} \cap E_{2}\right)}{\operatorname{Prob}\left(E_{2}\right)}
$$

- General multiplication rule

$$
\begin{aligned}
\operatorname{Prob}\left(E_{1} \cap E_{2}\right) & =\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} \mid E_{1}\right) \\
& =\operatorname{Prob}\left(E_{2}\right) \cdot \operatorname{Prob}\left(E_{1} \mid E_{2}\right)
\end{aligned}
$$

- Word problems (as before).

Chapter 8: Algorithms

- What is an algorithm?
- Search algorithms: know them, be able to trace on small input, know their strengths and weaknesses
- Linear search
- Binary search
- Sorting algorithms: know them, be able to trace on small input, know their strengths and weaknesses
- Bubble sort
- Merge sort
- Analysis of algorithms
- Time complexity as a function of input size
- Worst case, average case, best case
- Know the complexities of search and sort algorithms we have studied, at least in terms of O-notation
- O-notation: know how to find (best) O-notation for a given function
- Three representations:
- Graphical
- Set-theoretic
- Incidence matrix

Be able to convert between them.

- Terminology
- Vertices and edges
- Directed vs. undirected graphs
- Complete graphs
- Weighted graphs
- Walks, trails, circuits, cycles
- Euler trails and circuits
- Hamiltonian (Rudrata) circuits
- Tree, spanning tree, minimal spanning tree
- Euler trails and circuits: existence and non-existence
- Hamiltonian (Rudrata) circuits: existence and non-existence for small cases
- Minimal spanning trees via Prim's algorithm
- Using the incidence matrix
- Boolean matrix operations (sum, product): definition, algorithms and their cost
- Reachability matrix: definition, algorithms and their cost

