CISC 1400

Discrete Structures

Chapter 0
Introduction

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences
Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

Welcome to CISC 1400!

- A computer science course, seasoned with a soupçon of math.
- Or maybe a math course, tilted towards things a computer scientist needs to know.
- Counts towards the mathematical and computational reasoning requirement of the Fordham Core Curriculum.
- Required course for Computer Science and Information Science majors.
- Also used occasionally as an elective.

About your host

- Dr. Arthur G. Werschulz
- Office Hours: MTWR noon-1:00 or by appointment
- Office: LL 610D
- Phone: 212-636-6325
- Email: agw@dsm.fordham.edu
- Class email list: discrete@dsm.fordham.edu

Objective and desired outcomes

- Objectives:
- To develop the necessary abstract reasoning abilities while learning to succeed in a mathematical and computer environment
- Develop some of the math background needed in later CISC courses
- Desired outcomes:
- Be able to analyze and understand common math notation
- Be able to develop solutions to mathematical problems
- Be able to use a well-defined methodology to reason about math
- Be able to develop solution to multi-step reasoning problems

Available resources

Textbook Lyons et al., Fundamentals of Discrete Structures. Second Edition, 2012.

Available resources

Textbook Lyons et al., Fundamentals of Discrete Structures. Second Edition, 2012.

Website http://www.dsm.fordham.edu/~agw/discrete

Available resources

Textbook Lyons et al., Fundamentals of Discrete Structures. Second Edition, 2012.

Website http://www.dsm.fordham.edu/~agw/discrete Instructor He would love to help you out. Take advantage of office hours and email!

Things you really must know about

Attendance Really just short of mandatory. We are all busy people but I need to have you here for all class sessions. Unexcused absences or missing more than 4 classes will lower your course grade.
Homework Expect to spend approximately 6 hours each week on work. We'll discuss each day's homework at the next class session. So either know it, or be ready to ask about it!

Grading As follows:

- Participation: 10\%
- Homework: 30\%
- Written homework: 20\%
- Computer project: 10\%
- Midterm exam: 30\%
- Final exam: 30\%

More things you really must know about

- Computer project: Gives you experience building your own website.

More things you really must know about

- Computer project: Gives you experience building your own website.
- Exams: Keep these dates in mind
- Midterm exam: Monday, June 10 (tentative).
- Final exam: Thursday, June 27.

More things you really must know about

- Computer project: Gives you experience building your own website.
- Exams: Keep these dates in mind
- Midterm exam: Monday, June 10 (tentative).
- Final exam: Thursday, June 27.
- Academic integrity: In short: the work you do should be your own. You are only allowed help from authorized sources or when I explicitly permit it. You should read Fordham's academic integrity policy to know all your rights and all the rules

What's discrete mathematics?

- Continuous mathematics: deals with objects that can take on a continuous (smooth) set of values (high school algebra, trigonometry, ...)
- Discrete mathematics: deals with objects that can only assume distinct, separated values
- Sequences, sets
- Logic
- Relations, functions
- Counting, probability
- Graphs
- Useful for modeling many real-world objects (e.g., the Internet)
- Especially useful for computer problem solving
- Very practical!

We start with sets

- Sets are everywhere...

We start with sets

- Sets are everywhere...
- The group of all students in our class is a set.
- The group of all juniors in our class is a set.
- The set of all Facebook members who are not Linkedln members.

We start with sets

- Sets are everywhere...
- The group of all students in our class is a set.
- The group of all juniors in our class is a set.
- The set of all Facebook members who are not Linkedln members.
- Some sets are subsets of other sets. Example?

We start with sets

- Sets are everywhere...
- The group of all students in our class is a set.
- The group of all juniors in our class is a set.
- The set of all Facebook members who are not Linkedln members.
- Some sets are subsets of other sets. Example?
- Some sets are disjoint-they have no common elements. Example?

We start with sets

- Sets are everywhere...
- The group of all students in our class is a set.
- The group of all juniors in our class is a set.
- The set of all Facebook members who are not Linkedln members.
- Some sets are subsets of other sets. Example?
- Some sets are disjoint-they have no common elements. Example?
- Can do certain operations on sets (union, intersection, complement, ...)

Sequences

- People like to see patterns.

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$
- $1,2,6,24,120, \ldots$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$
- $1,2,6,24,120, \ldots .720$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$
- $1,2,6,24,120, \ldots 720$

2
Can't predict infinite sequence from finite information!
Any number could be correct for the next term!

- $1,2,4,8, \ldots$

Sequences

- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$
- $1,2,6,24,120, \ldots .720$

2
Can't predict infinite sequence from finite information!
Any number could be correct for the next term!

- $1,2,4,8, \ldots 15$!!!!
- People like to see patterns.
- What's the (most "reasonable") next number in each of the following sequences?
- $2,4,6,8, \ldots 10$
- $1,2,4,8, \ldots 16$
- $1,1,2,3,5,8, \ldots 13$
- $1,2,6,24,120, \ldots .720$

Can't predict infinite sequence from finite information!
Any number could be correct for the next term!

- $1,2,4,8, \ldots 15$!!!!
- Why? Let $a_{n}=\frac{4}{3} n-\frac{1}{2} n^{2}+\frac{1}{6} n^{3}$. Then

n	1	2	3	4	5	6
a_{n}	1	2	4	8	15	26

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).
- The pairs in which the first is older than the second.

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).
- The pairs in which the first is older than the second.
- Any such set of pairs is a binary relation on the set of Fordham students.

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).
- The pairs in which the first is older than the second.
- Any such set of pairs is a binary relation on the set of Fordham students.
- More generally, can have relations involving different sets:

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).
- The pairs in which the first is older than the second.
- Any such set of pairs is a binary relation on the set of Fordham students.
- More generally, can have relations involving different sets:
- Between students and classes: which classes are being taken by a given student?
- Between people and email addresses: what are a given person's email addresses?

From sets to relations ...

- Among the set of all students at Fordham University, some pairs are special:
- The pairs in which the students are Facebook friends of each other.
- The pairs having the same birthday.
- The pairs taking a specific class during a given term (e.g., CISC 1400 during the first summer term).
- The pairs that have ever taken a class in common during a given term (e.g., Spring, 2019).
- The pairs in which the first is older than the second.
- Any such set of pairs is a binary relation on the set of Fordham students.
- More generally, can have relations involving different sets:
- Between students and classes: which classes are being taken by a given student?
- Between people and email addresses: what are a given person's email addresses?
- Relational data bases: needed for e-commerce

Relations may represented by graphs

Visualizing relations with directed graphs

This graph could represent:

Visualizing relations with directed graphs

This graph could represent:

- Pairs of people, in which the first has sent an email to the second.
- Part of a street map.

Visualizing relations with undirected graphs

This graph could represent:

Visualizing relations with undirected graphs

This graph could represent:

- Friendship within Facebook.

Visualizing relations with undirected graphs

This graph could represent:

- Friendship within Facebook.
- Connections within Linkedln.

Graph problems

Can you draw the picture

without lifting the pencil or retracing any part of the figure?

Graph problems

Can you draw the picture

without lifting the pencil or retracing any part of the figure?

Real-world applications using graphs

- Computer networks: how to send data (URL request you type in browser) from your home computer to a web server?

Real-world applications using graphs

- Computer networks: how to send data (URL request you type in browser) from your home computer to a web server?
- Facebook: how to suggest new friends?

Real-world applications using graphs

- Computer networks: how to send data (URL request you type in browser) from your home computer to a web server?
- Facebook: how to suggest new friends?
- Engineering: how to connect five cities to via a highway with minimal cost?

Real-world applications using graphs

- Computer networks: how to send data (URL request you type in browser) from your home computer to a web server?
- Facebook: how to suggest new friends?
- Engineering: how to connect five cities to via a highway with minimal cost?
- Scheduling: how to assign classes to classrooms so that minimal number of classrooms are used?

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.
- From a certain point of view, describes any computation:

$$
x \in X \longrightarrow f
$$

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.
- From a certain point of view, describes any computation:

- Function composition and decomposition: useful in software design

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.
- From a certain point of view, describes any computation:

- Function composition and decomposition: useful in software design
- Examples of simple functions:

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.
- From a certain point of view, describes any computation:

- Function composition and decomposition: useful in software design
- Examples of simple functions:
- "Birth date of" is a function from people to calendar dates (but not vice versa!).

Functions: a special kind of relation between two sets

- ... where each element in the first set is related (mapped) to exactly one element in the second set.
- From a certain point of view, describes any computation:

- Function composition and decomposition: useful in software design
- Examples of simple functions:
- "Birth date of" is a function from people to calendar dates (but not vice versa!).
- "Social security number" is a function from the set of people having SSNs to the set of assigned SSNs (and vice versa).

Our class: birthday remark

- Someone says:

There are at least two students in the class that were born in the same season.
Do you agree?

Our class: birthday remark

- Someone says:

There are at least two students in the class that were born in the same season.
Do you agree?

- Pigeonhole principle: If you put m pigeons into n pigeonholes, where $m>n$, then there is a pigeonhole containing at least two pigeons.

Another pigeonhole principle example: choosing a pair of socks

- Suppose that you have three different kinds of socks.
- Suppose further that you shut your eyes and reach into your sock drawer.
- How many socks must you choose to guarantee that you'll pick a pair?

Another pigeonhole principle example: choosing a pair of socks

- Suppose that you have three different kinds of socks.
- Suppose further that you shut your eyes and reach into your sock drawer.
- How many socks must you choose to guarantee that you'll pick a pair?
- Four.

What is the size of a set?

- Simple questions:
- What is the cardinality (size) of the set? (How many students are in the class?)
- In how many ways can we represent a class representative?

What is the size of a set?

- Simple questions:
- What is the cardinality (size) of the set?
(How many students are in the class?)
- In how many ways can we represent a class representative?
- Harder questions:
- In how many ways can we elect a representative and an alternate?
- In how many ways can we choose...
- a 2-person study group?
- a 3-person study group?

Probability: How likely is something to happen?

- Suppose I choose one person randomly from the class. How likely are you to be chosen?

Probability: How likely is something to happen?

- Suppose I choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$

Probability: How likely is something to happen?

- Suppose I choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$
- Harder questions:

Probability: How likely is something to happen?

- Suppose I choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$
- Harder questions:
- Suppose I choose two people randomly from the class.
- How likely are you to be chosen?

Probability: How likely is something to happen?

- Suppose I choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$
- Harder questions:
- Suppose I choose two people randomly from the class.
- How likely are you to be chosen?
- How likely are you and your neighbor to be chosen?

Probability: How likely is something to happen?

- Suppose l choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$
- Harder questions:
- Suppose I choose two people randomly from the class.
- How likely are you to be chosen?
- How likely are you and your neighbor to be chosen?
- What's the probability of winning New York State Lotto (pick 6 out of 59)?

Probability: How likely is something to happen?

- Suppose l choose one person randomly from the class. How likely are you to be chosen? $\frac{1}{11}$
- Harder questions:
- Suppose I choose two people randomly from the class.
- How likely are you to be chosen?
- How likely are you and your neighbor to be chosen?
- What's the probability of winning New York State Lotto (pick 6 out of 59)?
- What about MegaMillions or PowerBall?

Logic: A tool for problem solving

- Your friend tells you:

If the birds are flying south and the leaves are turning, then it must be fall. Fall brings cold weather. The leaves are turning, but the weather is not cold. Therefore the birds are not flying south.

Logic: A tool for problem solving

- Your friend tells you:

If the birds are flying south and the leaves are turning, then it must be fall. Fall brings cold weather. The leaves are turning, but the weather is not cold. Therefore the birds are not flying south.

- Do you agree with her?

Logic: A tool for problem solving

- Your friend tells you:

If the birds are flying south and the leaves are turning, then it must be fall. Fall brings cold weather. The leaves are turning, but the weather is not cold. Therefore the birds are not flying south.

- Do you agree with her?
- Is her argument valid? sound? (what's the difference)?

Let's analyze her argument

- Suppose the following are true:
- If the birds are flying south and the leaves are turning, then it must be fall.
- Fall brings cold weather.
- The leaves are turning but the weather is not cold.

Let's analyze her argument

- Suppose the following are true:
- If the birds are flying south and the leaves are turning, then it must be fall.
- Fall brings cold weather.
- The leaves are turning but the weather is not cold.
- Can one conclude "the birds are not flying south"?

Let's analyze her argument (cont'd)

- We'll do a "proof by contradiction".
- Assume that the birds are flying south.

Let's analyze her argument (cont'd)

- We'll do a "proof by contradiction".
- Assume that the birds are flying south.
- Since (in addition) the leaves are turning, it must be fall.

Let's analyze her argument (cont'd)

- We'll do a "proof by contradiction".
- Assume that the birds are flying south.
- Since (in addition) the leaves are turning, it must be fall.
- Fall brings cold weather. So it must be cold.

Let's analyze her argument (cont'd)

- We'll do a "proof by contradiction".
- Assume that the birds are flying south.
- Since (in addition) the leaves are turning, it must be fall.
- Fall brings cold weather. So it must be cold.
- But it's actually not cold!!

Let's analyze her argument (cont'd)

- We'll do a "proof by contradiction".
- Assume that the birds are flying south.
- Since (in addition) the leaves are turning, it must be fall.
- Fall brings cold weather. So it must be cold.
- But it's actually not cold!!
- Contradiction! So our assumption that the birds are flying south must be wrong.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.
- Prim's algorithm: how to connect all of the homes in a town using the least amount of cable.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.
- Prim's algorithm: how to connect all of the homes in a town using the least amount of cable.
- RSA encryption algorithm: public-key cryptography makes secure e-business possible.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.
- Prim's algorithm: how to connect all of the homes in a town using the least amount of cable.
- RSA encryption algorithm: public-key cryptography makes secure e-business possible.
- Dijkstra's algorithm for shortest paths between cities.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.
- Prim's algorithm: how to connect all of the homes in a town using the least amount of cable.
- RSA encryption algorithm: public-key cryptography makes secure e-business possible.
- Dijkstra's algorithm for shortest paths between cities.
- α, β pruning algorithm: improves the performance of game playing (e.g., chess) programs by quickly eliminating moves that are provably sub-optimal.

Algorithms

- Google's PageRank algorithm: finding relevant web pages.
- Prim's algorithm: how to connect all of the homes in a town using the least amount of cable.
- RSA encryption algorithm: public-key cryptography makes secure e-business possible.
- Dijkstra's algorithm for shortest paths between cities.
- α, β pruning algorithm: improves the performance of game playing (e.g., chess) programs by quickly eliminating moves that are provably sub-optimal.
- The Sutherland-Hodgman polygon clipping algorithm: speeds up the rendering of images for computer graphics and video game programs by removing objects that do not fall into the "camera's" field of view.
- Algorithms in machine learning, data analytics: getting a lot of attention these days.

Our list of topics:

- Sets
- Sequences
- Logic
- Relations
- Functions
- Counting
- Probability
- Algorithms
- Graph theory

Goals for this course

- Master the basics of discrete mathematics
- Develop mathematical and computational reasoning abilities
- Become more comfortable and confident with both mathematics and computation

Discrete mathematics is essential for computer problem solving

- Model real-world entity
- Student records in a registration system \rightarrow elements of a set
- Nodes in a network \rightarrow vertices in a graph

Discrete mathematics is essential for computer problem solving

- Model real-world entity
- Student records in a registration system \rightarrow elements of a set
- Nodes in a network \rightarrow vertices in a graph
- Develop/identify an algorithm solving a particular problem
- Search for a student record (using ID number)
- Query for a course having a particular prefix (e.g., "CISC")
- Find shortest path in a graph (think Google Maps)

Discrete mathematics is essential for computer problem solving

- Model real-world entity
- Student records in a registration system \rightarrow elements of a set
- Nodes in a network \rightarrow vertices in a graph
- Develop/identify an algorithm solving a particular problem
- Search for a student record (using ID number)
- Query for a course having a particular prefix (e.g., "CISC")
- Find shortest path in a graph (think Google Maps)
- Implement algorithm using a programming language that computers "understand"

