CISC 1400

Discrete Structures

Chapter 1 Sets

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences
Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

Outline

- Basic definitions
- Naming and describing sets
- Comparison relations on sets
- Set operations
- Principle of Inclusion/Exclusion

Sets

- Set: a collection of objects (the members or elements of the set)
- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
- $\{a, b, c, d, e, f\}$
- \{Arizona, California, Massachusetts, 42, 47\}
- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
- $\{a, b, c, d, e, f\}$
- \{Arizona, California, Massachusetts, 42, 47\}
- A set may contain other sets as elements:

$$
\{1,2,\{1,2\}\}
$$

- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
- $\{a, b, c, d, e, f\}$
- \{Arizona, California, Massachusetts, 42, 47\}
- A set may contain other sets as elements:

$$
\{1,2,\{1,2\}\}
$$

- The empty set $\emptyset=\{ \}$ contains no elements
- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
- $\{a, b, c, d, e, f\}$
- \{Arizona, California, Massachusetts, 42,47\}
- A set may contain other sets as elements:

$$
\{1,2,\{1,2\}\}
$$

- The empty set $\emptyset=\{ \}$ contains no elements
- Can use variables (usually upper case letters) to denote sets

$$
C=\{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}
$$

- Set: a collection of objects (the members or elements of the set)
- Set-lister notation: curly braces around a list of the elements
- $\{a, b, c, d, e, f\}$
- \{Arizona, California, Massachusetts, 42,47\}
- A set may contain other sets as elements:

$$
\{1,2,\{1,2\}\}
$$

- The empty set $\emptyset=\{ \}$ contains no elements
- Can use variables (usually upper case letters) to denote sets

$$
C=\{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}
$$

- Universal set (generally denoted U): contains all elements we might ever consider (only consider what matters)

Enumerating the elements of a set

- Order doesn't matter

$$
\{1,2,3\}=\{3,1,2\}
$$

Enumerating the elements of a set

- Order doesn't matter

$$
\{1,2,3\}=\{3,1,2\}
$$

- Repetitions don't count

$$
\{a, b, b\}=\{a, b\}
$$

(better yet: don't repeat items in a listing of elements)

Element notation

If A is a set, then

- $x \in A$ means " x is an element of A "
- $x \notin A$ means " x is not an element of A "

Element notation

If A is a set, then

- $x \in A$ means " x is an element of A "
- $x \notin A$ means " x is not an element of A "

So

- $e \in\{a, e, i, o, u\}$
- $f \notin\{a, e, i, o, u\}$

Some well-known sets

- Pretty much standard notations:
- $\mathbb{N}=\{0,1,2,3,4,5, \ldots\}$: the set of natural numbers (non-negative integers).
- $\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2, \ldots\}$: the set of all integers.
- \mathbb{Q} : the set of all rational numbers (fractions).
- \mathbb{R} : the set of all real numbers.

Some well-known sets

- Pretty much standard notations:
- $\mathbb{N}=\{0,1,2,3,4,5, \ldots\}$: the set of natural numbers (non-negative integers).
- $\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2, \ldots\}$: the set of all integers.
- \mathbb{Q} : the set of all rational numbers (fractions).
- \mathbb{R} : the set of all real numbers.
- Less standard (but useful) notations:
- \mathbb{Z}^{+}is the set of positive integers.
- \mathbb{Z}^{-}is the set of negative integers.
- $\mathbb{Z}^{\geq 0}$ is the same as \mathbb{N}.
- $\mathbb{R}^{>7}$ is the set of all real numbers greater than seven.

Set builder notation

Rather than listing all the elements

$$
\mathbb{N}=\{0,1,2,3,4,5, \ldots\}
$$

(inconvenient or essentially impossible), describe sets via a property

$$
A=\{x: p(x) \text { is true }\}
$$

Set builder notation

Rather than listing all the elements

$$
\mathbb{N}=\{0,1,2,3,4,5, \ldots\}
$$

(inconvenient or essentially impossible), describe sets via a property

$$
A=\{x: p(x) \text { is true }\}
$$

Examples:

$$
\begin{aligned}
& \mathbb{N}=\{x \mid x \in \mathbb{Z} \text { and } x \geq 0\} \\
& \mathbb{N}=\{x: x \in \mathbb{Z} \text { and } x \geq 0\} \\
& \mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 0\} \\
& \mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
\end{aligned}
$$

Set builder notation (cont'd)

More examples:

$$
\{x \in \mathbb{Q}: 2 x=7\}=
$$

Set builder notation (cont'd)

More examples:

$$
\{x \in \mathbb{Q}: 2 x=7\}=\{3.5\}
$$

Set builder notation (cont'd)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =
\end{aligned}
$$

Set builder notation (cont'd)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x & =7\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\}
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =\{0,3,6,9, \ldots\}
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =\{0,3,6,9, \ldots\} \\
\left\{x \in \mathbb{R}^{\geq 0}: x^{2}=2\right\} & =
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =\{0,3,6,9, \ldots\} \\
\left\{x \in \mathbb{R}^{\geq 0}: x^{2}=2\right\} & =\{\sqrt{2}\}
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =\{0,3,6,9, \ldots\} \\
\left\{x \in \mathbb{R}^{\geq 0}: x^{2}=2\right\} & =\{\sqrt{2}\} \\
\left\{x \in \mathbb{Q}^{\geq 0}: x^{2}=2\right\} & =
\end{aligned}
$$

Set builder notation (cont’d)

More examples:

$$
\begin{aligned}
\{x \in \mathbb{Q}: 2 x=7\} & =\{3.5\} \\
\{x \in \mathbb{Z}: 2 x=7\} & =\emptyset \\
\{2 x \mid x \in \mathbb{Z}\} & =\{\ldots,-4,-2,0,2,4, \ldots\} \\
\left\{x \in \mathbb{N}: \frac{1}{3} x \in \mathbb{Z}\right\} & =\{0,3,6,9, \ldots\} \\
\left\{x \in \mathbb{R}^{\geq 0}: x^{2}=2\right\} & =\{\sqrt{2}\} \\
\left\{x \in \mathbb{Q}^{\geq 0}: x^{2}=2\right\} & =\emptyset
\end{aligned}
$$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$
- $A \subseteq A$ for any set A
- $\emptyset \subseteq A$ for any set A

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$
- $A \subseteq A$ for any set A
- $\emptyset \subseteq A$ for any set A
- A is a proper subset of B (written " $A \subset B$ ") if $A \subseteq B$ and $A \neq B$.

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$
- $A \subseteq A$ for any set A
- $\emptyset \subseteq A$ for any set A
- A is a proper subset of B (written " $A \subset B$ ") if $A \subseteq B$ and $A \neq B$.
- $\{1,3,5\} \subset\{1,2,3,4,5\}$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$
- $A \subseteq A$ for any set A
- $\emptyset \subseteq A$ for any set A
- A is a proper subset of B (written " $A \subset B$ ") if $A \subseteq B$ and $A \neq B$.
- $\{1,3,5\} \subset\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \not \subset\{1,2,3,4,5\}$

Comparison relations on sets

- A is a subset of B (written " $A \subseteq B$ ") if each element of A is also an element of B.
- $\{1,3,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \subseteq\{1,2,3,4,5\}$
- $\{1,3,6\} \nsubseteq\{1,2,3,4,5\}$
- $A \subseteq A$ for any set A
- $\emptyset \subseteq A$ for any set A
- A is a proper subset of B (written " $A \subset B$ ") if $A \subseteq B$ and $A \neq B$.
- $\{1,3,5\} \subset\{1,2,3,4,5\}$
- $\{1,2,3,4,5\} \not \subset\{1,2,3,4,5\}$
- \subset vs. \subseteq is somewhat like $<$ vs. \leq

Element vs. subset

- \in means "is an element of"

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

$$
\begin{aligned}
& B — A \quad \notin, \subseteq, \subset, \neq \\
& \text { blue -_A }
\end{aligned}
$$

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

B	$\neq A$
blue -_ A	$\in, \subseteq, \subset, \neq$
green _- A	

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in, \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

B	A	$\notin, \subseteq, \subset, \neq$
blue	A	\in, \nsubseteq, \neq
green	A	\notin, \nsubseteq, \neq
	A	

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in, \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

B	A	$\notin, \subseteq, \subset, \neq$
blue	A	\in, \nsubseteq, \neq
green	A	\notin, \nsubseteq, \neq
A	A	$\notin, \subseteq,=$
purple\}	B	

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in, \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

B	$\notin A$
blue __ A	$\in, \subseteq, \subset, \neq \neq$
green __ A	$\notin, \nsubseteq \neq \neq$
A	A
purple $\}$	$\notin, \subseteq,=$
A	$\neq B, \nsubseteq \neq \neq$

Element vs. subset

- \in means "is an element of"
- \subseteq means "is a subset of"

$$
A \subseteq B \quad \text { means } \quad \text { if } x \in A \text { then } x \in B
$$

- Examples: Let

$$
A=\{\text { purple, blue, orange, red }\} \quad \text { and } \quad B=\{\text { blue }\} .
$$

Fill in the missing symbol from the set $\{\in, \notin, \subseteq, \subset, \nsubseteq,=, \neq\}$ to correctly complete each of the following statements:

	A	$\notin, \subseteq, \subset, \neq$
blue	A	\in, \nsubseteq, \neq
green	A	$\notin, \not \subset, \neq$
A	A	$\notin, \subseteq,=$
purple\}	B	$\notin, \not \subset, \neq$
A	B	\notin, \nsubseteq, \neq

Venn Diagram

Diagram for visualizing sets and set operations

When necessary, indicate universal set via rectangle surrounding the set circles.

Venn Diagram (cont’d)

For example, might have
$A=\{$ Fordham students who've taken CISC 1400\}
$B=\{$ Fordham students who've taken CISC 1600 $\}$
$C=\{$ Fordham students who've taken ECON 1100 $\}$

Set operations: Cardinality

The number of elements in a set is called its cardinality. We denote the cardinality of S by $|S|$.

Set operations: Cardinality

The number of elements in a set is called its cardinality. We denote the cardinality of S by $|S|$.

- Let $A=\{a, b, c, d, e, z\}$. Then $|A|=6$.

Set operations: Cardinality

The number of elements in a set is called its cardinality. We denote the cardinality of S by $|S|$.

- Let $A=\{a, b, c, d, e, z\}$. Then $|A|=6$.
- $|\{a, e, i, o, u\}|=5$.

Set operations: Cardinality

The number of elements in a set is called its cardinality.
We denote the cardinality of S by $|S|$.

- Let $A=\{a, b, c, d, e, z\}$. Then $|A|=6$.
- $|\{a, e, i, o, u\}|=5$.
- $|\emptyset|=0$.

Set operations: Cardinality

The number of elements in a set is called its cardinality.
We denote the cardinality of S by $|S|$.

- Let $A=\{a, b, c, d, e, z\}$. Then $|A|=6$.
- $|\{a, e, i, o, u\}|=5$.
- $|\emptyset|=0$.
- $|\{a,\{b, c\}, d,\{e, f, g\}, h\}|=$

Set operations: Cardinality

The number of elements in a set is called its cardinality.
We denote the cardinality of S by $|S|$.

- Let $A=\{a, b, c, d, e, z\}$. Then $|A|=6$.
- $|\{a, e, i, o, u\}|=5$.
- $|\emptyset|=0$.
- $|\{a,\{b, c\}, d,\{e, f, g\}, h\}|=5$.

Set operations: Union

Set of all elements belonging to either of two given sets:

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{0,2,4,6,8\} \\
C & =\{0,5,10,15\}
\end{aligned}
$$

Then

$$
A \cup B=
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A \cup B=\{0,1,2,3,4,5,6,8\} \\
& B \cup A=
\end{aligned}
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A \cup B=\{0,1,2,3,4,5,6,8\} \\
& B \cup A=\{0,1,2,3,4,5,6,8\} \\
& B \cup C=
\end{aligned}
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cup B & =\{0,1,2,3,4,5,6,8\} \\
B \cup A & =\{0,1,2,3,4,5,6,8\} \\
B \cup C & =\{0,2,4,5,6,8,10,15\} \\
(A \cup B) \cup C & =
\end{aligned}
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cup B & =\{0,1,2,3,4,5,6,8\} \\
B \cup A & =\{0,1,2,3,4,5,6,8\} \\
B \cup C & =\{0,2,4,5,6,8,10,15\} \\
(A \cup B) \cup C & =\{0,1,2,3,4,5,6,8,10,15\}
\end{aligned}
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{0,2,4,6,8\} \\
C & =\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cup B & =\{0,1,2,3,4,5,6,8\} \\
B \cup A & =\{0,1,2,3,4,5,6,8\} \\
B \cup C & =\{0,2,4,5,6,8,10,15\} \\
(A \cup B) \cup C & =\{0,1,2,3,4,5,6,8,10,15\}
\end{aligned}
$$

Let

$$
\begin{aligned}
L & =\{e, g, b, d, f\} \\
S & =\{f, a, c, e\}
\end{aligned}
$$

Then

$$
L \cup S=
$$

Set operations: Union (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{0,2,4,6,8\} \\
C & =\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cup B & =\{0,1,2,3,4,5,6,8\} \\
B \cup A & =\{0,1,2,3,4,5,6,8\} \\
B \cup C & =\{0,2,4,5,6,8,10,15\} \\
(A \cup B) \cup C & =\{0,1,2,3,4,5,6,8,10,15\}
\end{aligned}
$$

Let

$$
\begin{aligned}
& L=\{e, g, b, d, f\} \\
& S=\{f, a, c, e\}
\end{aligned}
$$

Then

$$
L \cup S=\{a, b, c, d, e, f, g\}
$$

Set operations: Intersection

Set of all elements belonging to both of two given sets:

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

Note: We say that two sets are disjoint if their intersection is empty.

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
A \cap B=
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A \cap B=\{2,4\} \\
& B \cap A=
\end{aligned}
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{0,2,4,6,8\} \\
C & =\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A \cap B=\{2,4\} \\
& B \cap A=\{2,4\} \\
& B \cap C=
\end{aligned}
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cap B & =\{2,4\} \\
B \cap A & =\{2,4\} \\
B \cap C & =\{0\} \\
(A \cap B) \cap C & =
\end{aligned}
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cap B & =\{2,4\} \\
B \cap A & =\{2,4\} \\
B \cap C & =\{0\} \\
(A \cap B) \cap C & =\emptyset
\end{aligned}
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cap B & =\{2,4\} \\
B \cap A & =\{2,4\} \\
B \cap C & =\{0\} \\
(A \cap B) \cap C & =\emptyset
\end{aligned}
$$

Let

$$
\begin{aligned}
& L=\{e, g, b, d, f\} \\
& S=\{f, a, c, e\}
\end{aligned}
$$

Then

$$
L \cap S=
$$

Set operations: Intersection (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \cap B & =\{2,4\} \\
B \cap A & =\{2,4\} \\
B \cap C & =\{0\} \\
(A \cap B) \cap C & =\emptyset
\end{aligned}
$$

Let

$$
\begin{aligned}
& L=\{e, g, b, d, f\} \\
& S=\{f, a, c, e\}
\end{aligned}
$$

Then

$$
L \cap S=\{e, f\}
$$

Set operations: Difference

Set of all elements belonging to one set, but not another:

$$
A-B=\{x: x \in A \text { and } x \notin B\}
$$

Set operations: Difference

Set of all elements belonging to one set, but not another:

$$
A-B=\{x: x \in A \text { and } x \notin B\}
$$

Note that

$$
|A-B|=|A|-|A \cap B|
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
A-B=
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A-B=\{1,3,5\} \\
& B-A=
\end{aligned}
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{0,2,4,6,8\} \\
C & =\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A-B=\{1,3,5\} \\
& B-A=\{0,6,8\} \\
& B-C=
\end{aligned}
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A-B=\{1,3,5\} \\
& B-A=\{0,6,8\} \\
& B-C=\{2,4,6,8\} \\
& C-B=
\end{aligned}
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A-B & =\{1,3,5\} \\
B-A & =\{0,6,8\} \\
B-C & =\{2,4,6,8\} \\
C-B & =\{5,10,15\} \\
(A-B) \cap(B-A) & =
\end{aligned}
$$

Set operations: Difference (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3,4,5\} \\
& B=\{0,2,4,6,8\} \\
& C=\{0,5,10,15\}
\end{aligned}
$$

Then

$$
\begin{aligned}
A-B & =\{1,3,5\} \\
B-A & =\{0,6,8\} \\
B-C & =\{2,4,6,8\} \\
C-B & =\{5,10,15\} \\
(A-B) \cap(B-A) & =\emptyset \quad \text { (Are you surprised by this?) }
\end{aligned}
$$

Set operations: Complement

Set of all elements (of the universal set) that do not belong to a given set:

$$
A^{\prime}=U-A
$$

Venn diagrams dealing with complements generally use a surrounding rectangle to indicate the universal set U :

If U and A are finite sets, then

$$
\left|A^{\prime}\right|=|U-A|=|U|-|A| .
$$

Set operations: Complement (examples)

- Let

$$
\begin{aligned}
U & =\{\text { red, orange }, \text { yellow, green, blue, indigo, violet }\} \\
P & =\{\text { red, green, blue }\}
\end{aligned}
$$

Then

$$
P^{\prime}=
$$

Set operations: Complement (examples)

- Let

$$
\begin{aligned}
U & =\{\text { red, orange, yellow, green, blue, indigo, violet }\} \\
P & =\{\text { red, green, blue }\}
\end{aligned}
$$

Then

$$
P^{\prime}=\{\text { orange }, \text { yellow, indigo, violet }\}
$$

- Let E and O respectively denote the sets of even and odd integers. Suppose that our universal set is \mathbb{Z}. Then

$$
E^{\prime}=
$$

Set operations: Complement (examples)

- Let

$$
\begin{aligned}
U & =\{\text { red, orange, yellow, green, blue, indigo, violet }\} \\
P & =\{\text { red, green, blue }\}
\end{aligned}
$$

Then

$$
P^{\prime}=\{\text { orange, yellow, indigo, violet }\}
$$

- Let E and O respectively denote the sets of even and odd integers. Suppose that our universal set is \mathbb{Z}. Then

$$
\begin{aligned}
& E^{\prime}=O \\
& O^{\prime}=
\end{aligned}
$$

Set operations: Complement (examples)

- Let

$$
\begin{aligned}
U & =\{\text { red, orange, yellow, green, blue, indigo, violet }\} \\
P & =\{\text { red, green, blue }\}
\end{aligned}
$$

Then

$$
P^{\prime}=\{\text { orange, yellow, indigo, violet }\}
$$

- Let E and O respectively denote the sets of even and odd integers. Suppose that our universal set is \mathbb{Z}. Then

$$
\begin{aligned}
& E^{\prime}=O \\
& O^{\prime}=E
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set
$B \in \mathscr{P}(A)$ if and only if $B \subseteq A$

Set operations: Power Set

Set of all subsets of a given set

$B \in \mathscr{P}(A)$ if and only if $B \subseteq A$

$\mathscr{P}(\emptyset)=$

Set operations: Power Set

Set of all subsets of a given set

$$
B \in \mathscr{P}(A) \text { if and only if } B \subseteq A
$$

$$
\mathscr{P}(\emptyset)=\{\emptyset\}
$$

Set operations: Power Set

Set of all subsets of a given set

$$
B \in \mathscr{P}(A) \text { if and only if } B \subseteq A
$$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set

$$
B \in \mathscr{P}(A) \text { if and only if } B \subseteq A
$$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\}
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set

$B \in \mathscr{P}(A)$ if and only if $B \subseteq A$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\} \\
\mathscr{P}(\{a, b\}) & =
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set

$B \in \mathscr{P}(A)$ if and only if $B \subseteq A$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\} \\
\mathscr{P}(\{a, b\}) & =\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
\mathscr{P}(\{a, b, c\}) & =
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set

$B \in \mathscr{P}(A)$ if and only if $B \subseteq A$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\} \\
\mathscr{P}(\{a, b\}) & =\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
\mathscr{P}(\{a, b, c\}) & =\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
\end{aligned}
$$

Set operations: Power Set

Set of all subsets of a given set

$$
B \in \mathscr{P}(A) \text { if and only if } B \subseteq A
$$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\} \\
\mathscr{P}(\{a, b\}) & =\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
\mathscr{P}(\{a, b, c\}) & =\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
\end{aligned}
$$

How many elements does $\mathscr{P}(A)$ have?

Set operations: Power Set

Set of all subsets of a given set

$$
B \in \mathscr{P}(A) \text { if and only if } B \subseteq A
$$

$$
\begin{aligned}
\mathscr{P}(\emptyset) & =\{\emptyset\} \\
\mathscr{P}(\{a\}) & =\{\emptyset,\{a\}\} \\
\mathscr{P}(\{a, b\}) & =\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
\mathscr{P}(\{a, b, c\}) & =\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
\end{aligned}
$$

How many elements does $\mathscr{P}(A)$ have?

$$
|\mathscr{P}(A)|=2^{|A|}
$$

i.e.,

$$
\text { if }|A|=n \text {, then }|\mathscr{P}(A)|=2^{n} .
$$

Some basic laws of set theory

Here, U is a universal set, with $A, B, C, S \subseteq U$.

Name	Law
Identity	$S \cap U=S$
Identity	$S \cup \emptyset=S$
Complement	$S \cap S^{\prime}=\emptyset$
Complement	$S \cup S^{\prime}=U$
Double Complement	$\left(S^{\prime}\right)^{\prime}=S$
Idempotent	$S \cap S=S$
Idempotent	$S \cup S=S$
Commutative	$A \cap B=B \cap A$
Commutative	$A \cup B=B \cup A$

Once again, U is a universal set, with $A, B, C, S \subseteq U$.

Name	Law
Associative	$(A \cap B) \cap C=A \cap(B \cap C)$
Associative	$(A \cup B) \cup C=A \cup(B \cup C)$
Distributive	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Distributive	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
DeMorgan	$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
DeMorgan	$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Equality	$A=B$ if and only if $A \subseteq B$ and $B \subseteq A$
Transitive	if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$

Set operations: Cartesian Product

- Ordered pair: Pair of items, in which order matters. - $(1,2)$

Set operations: Cartesian Product

- Ordered pair: Pair of items, in which order matters. - $(1,2) \ldots$ not the same thing as $(2,1)$

Set operations: Cartesian Product

- Ordered pair: Pair of items, in which order matters.
- $(1,2) \ldots$ not the same thing as $(2,1)$
- (red, blue)

Set operations: Cartesian Product

- Ordered pair: Pair of items, in which order matters.
- $(1,2) \ldots$ not the same thing as $(2,1)$
- (red, blue)
- (1,green)

Set operations: Cartesian Product

- Ordered pair: Pair of items, in which order matters.
- $(1,2) \ldots$ not the same thing as $(2,1)$
- (red, blue)
- (1,green)
- Cartesian product (also known as set product): Set of all ordered pairs from two given sets, i.e.,

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...
$A \times B=$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\}$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\} \\
& B \times A=
\end{aligned}
$$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\} \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\}
\end{aligned}
$$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\}$
$B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\}$
$C \times A=$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\} \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\} \\
& C \times A=\{(-1,1),(-1,2),(-1,3),(5,1),(5,2),(5,3)\}
\end{aligned}
$$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\} \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\} \\
& C \times A=\{(-1,1),(-1,2),(-1,3),(5,1),(5,2),(5,3)\} \\
& B \times C=
\end{aligned}
$$

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{a, b, c\} \\
& C=\{-1,5\},
\end{aligned}
$$

Then ...

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\} \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\} \\
& C \times A=\{(-1,1),(-1,2),(-1,3),(5,1),(5,2),(5,3)\} \\
& B \times C=\{(a,-1),(a, 5),(b,-1),(b, 5),(c,-1),(c, 5)\}
\end{aligned}
$$

Note the following:

- $A \times B \neq B \times A$ (unless $A=B$)

Set operations: Cartesian Product (examples)

Let

$$
\begin{aligned}
A & =\{1,2,3\} \\
B & =\{a, b, c\} \\
C & =\{-1,5\},
\end{aligned}
$$

Then ...
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\}$
$B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\}$
$C \times A=\{(-1,1),(-1,2),(-1,3),(5,1),(5,2),(5,3)\}$
$B \times C=\{(a,-1),(a, 5),(b,-1),(b, 5),(c,-1),(c, 5)\}$
Note the following:

- $A \times B \neq B \times A$ (unless $A=B$)
- $|A \times B|=|A| \cdot|B|$ (that's why it's called "product").

Principle of Inclusion/Exclusion

Suppose you run a fast-food restaurant. After doing a survey, you find that

- 25 people like ketchup on their hamburgers,
- 35 people like pickles on their hamburgers,
- 15 people like both ketchup and pickles on their hamburgers.

Principle of Inclusion/Exclusion

Suppose you run a fast-food restaurant. After doing a survey, you find that

- 25 people like ketchup on their hamburgers,
- 35 people like pickles on their hamburgers,
- 15 people like both ketchup and pickles on their hamburgers.
How many people like either ketchup or pickles (maybe both) on their hamburgers?

Principle of Inclusion/Exclusion

Suppose you run a fast-food restaurant. After doing a survey, you find that

- 25 people like ketchup on their hamburgers,
- 35 people like pickles on their hamburgers,
- 15 people like both ketchup and pickles on their hamburgers.
How many people like either ketchup or pickles (maybe both) on their hamburgers?
Let $K=$ \{people who like ketchup\} and
$P=\{$ people who like pickles $\}$.

Principle of Inclusion/Exclusion

Suppose you run a fast-food restaurant. After doing a survey, you find that

- 25 people like ketchup on their hamburgers,
- 35 people like pickles on their hamburgers,
- 15 people like both ketchup and pickles on their hamburgers.
How many people like either ketchup or pickles (maybe both) on their hamburgers?
Let $K=$ \{people who like ketchup\} and
$P=$ \{people who like pickles $\}$. Then

$$
|K|=25 \quad|P|=35 \quad|K \cap P|=15
$$

Principle of Inclusion/Exclusion

Principle of Inclusion/Exclusion

Since we don't want to count $K \cap P$ twice, we have

$$
|K \cup P|=|K|+|P|-|K \cap P|=25+35-15=45 .
$$

Set operations: cardinalities of union and intersection

- Inclusion/exclusion principle:

$$
|A \cup B|=
$$

Set operations: cardinalities of union and intersection

- Inclusion/exclusion principle:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Set operations: cardinalities of union and intersection

- Inclusion/exclusion principle:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- If A and B are disjoint, then

$$
|A \cup B|=|A|+|B|
$$

- See the example that animates this concept.
- What about three sets (hamburger eaters who like ketchup, pickles, and tomatoes)?

Principle of Inclusion/Exclusion

For three sets:

$|A \cup B \cup C|=$

$$
|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| .
$$

Principle of Inclusion/Exclusion

Let K, P, T represent the sets of people who like ketchup, pickles, and tomatoes on their hamburgers. Suppose that

$$
\begin{array}{ccc}
|K|=20 & |P|=30 & |T|=45 \\
|K \cap P|=10 & |K \cap T|=12 & |P \cap T|=13 \\
& |K \cap P \cap T|=8 &
\end{array}
$$

Principle of Inclusion/Exclusion

Let K, P, T represent the sets of people who like ketchup, pickles, and tomatoes on their hamburgers. Suppose that

$$
\begin{array}{ccc}
|K|=20 & |P|=30 & |T|=45 \\
|K \cap P|=10 & |K \cap T|=12 & |P \cap T|=13 \\
& |K \cap P \cap T|=8 . &
\end{array}
$$

Then

$$
\begin{aligned}
|K \cup P \cup T|= & |K|+|P|+|T|- \\
& |K \cap P|-|K \cap T|-|P \cap T|+ \\
& |K \cap P \cap T| \\
= & 20+30+45-10-12-13+8 \\
= & 68
\end{aligned}
$$

