
Beyond Varsity Math:
The red-and-blue-balls puzzle

An odds inversion problem
The red-and-blue balls puzzle, and much more

Introduction1 
“From a bag containing red and blue balls, two are removed at random. The chances are 50-50 that 
they will differ in color.
What were the possible numbers of balls initially in the bag?”

This problem appeared in the National Museum of Mathematics Varsity Math Week puzzle number 117.
Here we solve that problem and then explore the solutions for other values of the odds.

Hence it is a problem in inverting a probability to find the input numbers that will produce it.

The style of exposition in this document is exploratory, rather than simply presenting the solution 
methods.  I want to let the reader share in a way in the enjoyment I had, gradually unfolding the secrets 
of this problem.  But the exposition does not follow my own track in solving the problem.  I went down 
many blind alleys, or made discoveries that rendered earlier approaches obsolete.  I have organized the 
topics in a logical sequence, omitting the false starts and digressions.

Notes
By Robert K. Moniot, Fordham University, 2020.  This work is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licens-
es/by-sa/4.0/.

Disclaimer: this work has not been peer reviewed.  There may be errors here and there.  I welcome feedback 
pointing out any errors.  This version dated 1 May, 2020.
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To the reader1.2  
The aim of this document is to share with you something of the enjoyment I had working out the 
solution of the problem and exploring various lines of inquiry that I encountered along the way.  Hence, 
while the document mainly marches along on an orderly route to solving the different cases, there are 
many digressions and excursions.  Where these are particularly arcane and not essential to the main 
task, I so note.  You should be prepared for a leisurely ramble: the exposition is not designed to be read 
quickly.  It is my hope that I have provided enough support in the form of proofs and examples so that 
the reader can follow along without too much effort.  It is assumed that the reader is mathematically 
inclined and is comfortable with algebra, calculus, and elementary number theory.  Some calculus is 
used in places when exploring trends and limits.  I hope you have as much fun with this as I did.

The reader who is unfamiliar with Mathematica may have some difficulty following the steps in this 
document that use Mathematica expressions.  Documentation of the Mathematica language and 
functions can be found at https://reference.wolfram.com/language/.

The Varsity Math problem2 
The problem posed in the Varsity Math puzzle can be solved with high-school level algebra.  You might 
suppose at first that to have 50-50 odds of drawing balls of different colors, there should be an equal 
number of each color in the bag.  But this is  not the case.  Suppose you draw a red ball initially.  Now 
the bag contains more blue balls than red ones, so the odds of drawing a blue ball are higher than 50%.  
Let’s solve the problem to see what the correct answer is.

Let x, y be the numbers of red and blue balls, respectively.  The probability of picking a red and then a 
blue ball from the bag is

2     odds-inversion.nb



Let x, y be the numbers of red and blue balls, respectively.  The probability of picking a red and then a 
blue ball from the bag is

In[53]:= probredblue[{x_, y_}] :=
x

x + y

y

x + y - 1

The odds of picking a blue and then a red ball are

In[54]:= probbluered[{x_, y_}] :=
y

x + y

x

x + y - 1

Obviously these are equal.  The probability of picking different-colored balls is their sum:

In[55]:= probdifferent[{x_, y_}] := probredblue[{x, y}] + probbluered[{x, y}]

So in order for the odds of picking different-colored balls to be 50-50, i.e. a probability of 1 /2, we need 
to solve

In[56]:= probdifferent[{x, y}] ⩵
1

2

Out[56]=
2 x y

(-1 + x + y) (x + y)
⩵

1

2

Cross multiplying and expanding terms, we obtain

In[57]:= Simplify[Expand[(x + y) (-1 + x + y) ⩵ 4 x y]]

Out[57]= x2 + y2 ⩵ x + y + 2 x y

This rearranges to

x2 - 2 x y + y2 ⩵ x + y
(x - y)2 ⩵ x + y ⩵ t

where t is the total number of balls.  This shows that  t must be a square.  Let t ⩵ v2.  Then x - y ⩵±v 
while x + y ⩵ v2.  Taking the minus sign so that x ≤ y, we have y - x ⩵ v and y + x ⩵ v2.  Adding these, 
we obtain

2 y ⩵ v2 + v, y ⩵
v2 + v

2
⩵

v (v + 1)

2

Subtracting them instead,

2 x ⩵ v2 - v, x ⩵
v2 - v

2
⩵

v (v - 1)

2

Observe that x and y are successive triangular numbers.  The sum of successive triangular numbers is 
always a square.  Pretty cool.

Here is a table of the first 10 solutions.
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In[']:= TableFormTable
1

2
v2 - v,

1

2
v2 + v, v2, {v, 10},

TableHeadings → {None, {x, y, t}}

Out[']//TableForm=

x y t
0 1 1
1 3 4
3 6 9
6 10 16
10 15 25
15 21 36
21 28 49
28 36 64
36 45 81
45 55 100

The first row formally satisfies the equation but is not an acceptable solution, since there are not 2 balls 
to draw out.  (Including v ⩵ 0 would yield another unacceptable solution (0, 0).  Negative values of v 
generate the same table but with x and y swapped.)

Generalizing the problem3 

Questions to be answered3.1  
Having solved the Varsity Math problem, an obvious followup question is to ask what we can say about 
other odds than 50-50.  This generalized problem turns out to be solvable, with a rich variety of differ-
ent cases requiring different solution methods.  We seek to answer the questions:

◼ For a given probability ratio, is there a solution to the problem?  That is, does there exist a pair of 
numbers of red and blue balls that give that probability?

◼ If there is a solution, is the number of solutions finite or infinite?

◼ For instances with a finite number of solutions, can we list them all?

◼ For instances with an infinite number of solutions, can we obtain a formula or recurrence that will 
generate as many solutions as desired?

◼ Can we show that the methods used are capable of finding all solutions, not missing any that exist?

It turns out that all of these questions can be answered satisfactorily.

Main results3.2  
The main results I obtained are:
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◼ For any probability ratio greater than 50%, the number of solutions is either none or finite, and an 
algorithm exists to determine all the solutions that exist or show that there are none.

◼ There are only a few probability ratios greater than 55% that have solutions, and only one ratio 
greater than 70% that has one (namely 100%, which has only one solution).

◼ The probability ratio of 50% is special, and has the infinite set of solutions obtained already.  The 
numbers of red and blue balls are any successive triangular numbers, whose sum is a square.

◼ For any probability ratio less than 50%, except for a minority (those for which the probability 
equation factors), the number of solutions is infinite, and an algorithm exists to generate as many 
solutions as desired.  The algorithm can find all solutions (up to any desired limit).

◼ For the minority of ratios less than 50% for which the probability equation factors, the number of 
solutions is either none or finite, and an algorithm exists to determine all the solutions that exist or 
show that there are none.

◼ The algorithms mentioned have finite running time, although for certain probability ratios the 
running time may be long.  In particular, probability ratios very slightly over or under 50% are 
problematic.  However, for any probability that can be expressed as a ratio of moderate-sized 
integers (e.g. up to 3 digits), the problem can be solved quickly (using a computer).  Also, for those 
probability ratios below 50% having an infinite number of solutions, if the numerator is prime or 
equal to 4, a  relatively simple and quick method can find all solutions.

◼ Interestingly, if the bag initially contains an equal number of red and blue balls, removing one ball 
does not change the odds of subsequently drawing two balls of different colors.

Preliminaries4 

Notation4.1  
As before, let x, y be the numbers of red and blue balls, respectively.  The probability of drawing balls 
of different colors is obviously a rational  number.  Denote it by p /q where p, q are relatively prime 
integers.  The basic problem then is, given a ratio p /q, find integer x, y values which produce that 
probability of drawing two balls of different colors.  The equation is

2 x y

(x + y) (x + y - 1)
⩵

p

q
(1)

Put the equation into a function.  Note: here and in other functions of solutions of the equation, the 
argument is a list, rather than separate variables (i.e. f[{x,y}] not f[x,y]).  This allows the 
functions to be applied to a list of solutions easily using /@ notation.

In[58]:= probequation[{x_, y_}] :=
2 x y

(x + y) (x + y - 1)
⩵

p

q
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Setting up the problem4.2  

The Diophantine equation4.2.1 

Put the probability equation into the form of a Diophantine equation, i.e. a polynomial equation involv-
ing only integers.

In[59]:= MultiplySides[probequation[{x, y}],
q (x + y - 1) (x + y), Assumptions → q (x + y - 1) (x + y) ≠ 0]

Out[59]= 2 q x y ⩵ p (-1 + x + y) (x + y)

In[60]:= SubtractSides[%, 2 q x y]

Out[60]= 0 ⩵ -2 q x y + p (-1 + x + y) (x + y)

In[61]:= CollectExpand[%], x2, x y, y2, x, y

Out[61]= 0 ⩵ -p x + p x2 - p y + (2 p - 2 q) x y + p y2

Rearranging,

p x2 - 2 (q - p) x y + p y2 - p x - p y ⩵ 0 (2)

Put this into a formula for convenience later.  The function returns true if the argument is a solution.  
The values of p and q are left as parameters rather than arguments.

In[62]:= xyeqn[{x_, y_}] := Evaluate[%]

Show that it works on one of the Varsity Math puzzle solutions.

In[63]:= xyeqn[{3, 6}] /. {p → 1, q → 2}

Out[63]= True

The values of p, q are givens and x, y are to be solved for.  Since p /q is a probability, we require

0 ≤
p

q
≤ 1 (3)

and p /q in lowest terms, i.e. gcd(p, q) ⩵ 1.

Formal and admissible solutions4.2.2 

We will call any pair of integers (x, y) satisfying Equation (2) a formal solution.  Since the number of 
balls of either color cannot be negative and there need to be at least two balls in the bag in order to be 
able to draw two out, not all formal solutions are admissible as solutions to the original problem.   For 
a solution to be admissible it must satisfy

x ≥ 0, y ≥ 0, x + y ≥ 2 (4)

The general quadratic Diophantine equation a x2 + b x y + c y2 + d x + e y + f ⩵ 0 is a fully solved prob-
lem, i.e. there are methods for finding all the solutions that exist, though the solution method is compli-
cated in many instances.  (See Alpern for details.)  Solutions are not, in general, guaranteed to exist for 
arbitrary values of the coefficients.  Our equation has a very special form, in that all but one of the 
coefficients are the same in magnitude, with opposite signs for the linear and squared terms of each 
variable.  This structure turns out to simplify the solution greatly relative to the general case, as we 
shall see shortly.
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The general quadratic Diophantine equation a x2 + b x y + c y2 + d x + e y + f ⩵ 0 is a fully solved prob-
lem, i.e. there are methods for finding all the solutions that exist, though the solution method is compli-
cated in many instances.  (See Alpern for details.)  Solutions are not, in general, guaranteed to exist for 
arbitrary values of the coefficients.  Our equation has a very special form, in that all but one of the 
coefficients are the same in magnitude, with opposite signs for the linear and squared terms of each 
variable.  This structure turns out to simplify the solution greatly relative to the general case, as we 
shall see shortly.

Trivial solutions4.2.3 

The lack of a constant term in Equation (2) leads to the existence of three trivial solutions that always 
satisfy the equation for any values of p and q:

x ⩵ 0, y ⩵ 0
x ⩵ 0, y ⩵ 1
x ⩵ 1, y ⩵ 0

(5)

These are not admissible solutions, but they will prove useful in finding admissible solutions.  When 
plugged into Equation (1), they yield p /q ⩵ 0 /0.  This is undefined, which is how they are able to satisfy  
Equation (2) for any values of p and q.

Symmetry4.2.4 

The equation is symmetric in x and y, so that if (x, y) is a solution, then (y, x) is also a solution.  When 
listing solutions, we will usually list just one member of the pair, usually choosing x ≤ y to provide 
uniqueness.  We will say two different solutions are distinct if they are not composed of the same two 
x, y values.

Change of variables4.2.5 

Equation (2) simplifies considerably if we change variables.  As we did in solving the Varsity Math 
puzzle, let

t ⩵ y + x, v ⩵ y - x

In[64]:= tvfromxy[{x_, y_}] := {y + x, y - x}

Define functions for mapping back.

In[65]:= Solve[{tvfromxy[{x, y}] ⩵ {t, v}}, {x, y}]

Out[65]= x →
t - v

2
, y →

t + v

2


In[66]:= xyfromtv[{t_, v_}] := 
t - v

2
,
t + v

2


Rewrite the probability equation in terms of these variables:

In[67]:= Simplify[xyeqn[{x, y}] /. Solve[{t ⩵ y + x, v ⩵ y - x}, {x, y}]]

Out[67]= 2 p (-1 + t) t + q -t2 + v2 ⩵ 0

Collect terms
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In[68]:= CollectExpand[%], v2, t, t2

Out[68]= -2 p t + (2 p - q) t2 + q v2 ⩵ 0

Rewrite in nicer form.

(q - 2 p) t2 + 2 p t - q v2 ⩵ 0 (6)

Put it into a function for later use.

In[69]:= tveqn[{t_, v_}] := (q - 2 p) t2 + 2 p t - q v2 ⩵ 0

If q - 2 p ⩵ 0 then p /q ⩵ 1 /2, which is the Varsity Math puzzle, already solved.  Otherwise, we can 
simplify (6) further by another change of variables, as follows.

If q - 2 p ≠ 0 we can eliminate the linear term by completing the square.  First step:  multiply LHS by 
(q - 2 p) to make the coefficient of t2 square.

(q - 2 p)2 t2 + 2 p (q - 2 p) t - q (q - 2 p) v2 ⩵ 0

Add p2 to both sides.

(q - 2 p)2 t2 + 2 p (q - 2 p) t + p2 - q (q - 2 p) v2 ⩵ p2

Observe that the first three terms are a square:

In[70]:= Simplify(q - 2 p)2 t2 + 2 p (q - 2 p) t + p2

Out[70]= (p - 2 p t + q t)2

Let

u ⩵ p - 2 p t + q t ⩵ (q - 2 p) t + p (7)

Then the equation is

u2 - q (q - 2 p) v2 ⩵ p2 (8)

If we let

D ⩵ q (q - 2 p) (9)

and

f ⩵ p2 (10)

we can write Equation (8) as

u2 - D v2 ⩵ f (11)

This is a well-studied equation.  If D > 0 is nonsquare and f ⩵ 1, it is called the Pell equation.  Otherwise 
it is called a Pell-like equation.  Weisstein gives a concise overview of the Pell and Pell-like equations.  
Hua (chapter 11) and Nagell (chapter VI) discuss the solution of Equation (11) in detail.

Define some functions that will be useful when solving.

In[71]:= uveqn[{u_, v_}] := u2 - q (q - 2 p) v2 ⩵ p2

In[72]:= uvfromtv[{t_, v_}] := {(q - 2 p) t + p, v}
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In[73]:= Solve[uvfromtv[{t, v}] ⩵ {u, v}, t]

Out[73]= t →
p - u

2 p - q


In[74]:= tvfromuv[{u_, v_}] := 
p - u

2 p - q
, v

In[75]:= tvfromuv[{u, v}]

Out[75]= 
p - u

2 p - q
, v

Note that even if u is integer, t may not be integer, unless u ≡ p mod (q - 2 p).

One last pair of functions to go directly from (u, v) to (x, y) and vice versa.

In[76]:= xyfromuv[{u_, v_}] := xyfromtv[tvfromuv[{u, v}]]

In[77]:= xyfromuv[{u, v}]

Out[77]= 
1

2

p - u

2 p - q
- v ,

1

2

p - u

2 p - q
+ v 

In[78]:= uvfromxy[{x_, y_}] := uvfromtv[tvfromxy[{x, y}]]

In[79]:= uvfromxy[{x, y}]

Out[79]= {p + (-2 p + q) (x + y), -x + y}

Existence and completeness of solutions4.2.6 

Equation (8) is not guaranteed to have integer solutions beyond the trivial ones for all values of p, q.  In 
the later sections, the existence of solutions will be examined for the different cases.  For some values 
of p /q no admissible solutions exist; for others a finite number exist; and for others the number of 
solutions is infinite.  The integer solutions (u, v) of Equation (8) that one may find need to be trans-
formed back to (t, v) which in turn need to be transformed back to (x, y).  From given u, v it is not 
guaranteed that t will be integer, and if t and v are integer it is not guaranteed that x and y will be.

Because integer (x, y) map to integer (u, v), if Equation (2) has integer solutions, they will correspond 
to integer solutions of Equation (8).  So solving the latter will turn up any solutions to the former that 
exist.  Below, methods will be developed to solve Equation (8).  The methods are capable of finding all 
solutions.

Mathematica4.2.7 

Mathematica is able to solve Equation (2) for admissible solutions or show that none exist.  Examples of 
using Mathematica to solve the problem are given in Section 13 at the end of this document.  Our aim, 
however, is not simply to obtain solutions but to see how they are obtained, and to obtain insight 
about when they exist and how many exist.  So except for Section 13 , Mathematica is used here only to 
perform tedious algebra or lengthy numerical calculations.  There are a lot of both of those here, so I 
am very grateful to Mathematica for its help.
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Mathematica is able to solve Equation (2) for admissible solutions or show that none exist.  Examples of 
using Mathematica to solve the problem are given in Section 13 at the end of this document.  Our aim, 
however, is not simply to obtain solutions but to see how they are obtained, and to obtain insight 
about when they exist and how many exist.  So except for Section 13 , Mathematica is used here only to 
perform tedious algebra or lengthy numerical calculations.  There are a lot of both of those here, so I 
am very grateful to Mathematica for its help.

Exploring the problem5 

The character of the equation5.1  
Equation (2) is a conic, so it can be an ellipse, a parabola, or a hyperbola.

The transformations from (x, y) to (t, v) and (u, v) are linear, so they only rotate and scale the curve, 
preserving its basic character.  It is easily seen from its form that Equation (11) is an ellipse if D < 0 and a 
hyperbola if D > 0, while if D ⩵ 0, which requires p /q ⩵ 1 /2, Equation (6) reduces to t - v2 ⩵ 0 (as we 
saw in Section 2), which is a parabola.  In (u, v)-space, the curves have their axis along the u-axis.  The 
parabola has its vertex at the origin, while the ellipse and the hyperbola are centered on the origin.  
Graphs are plotted below.

In (x, y)-space all the curves represented by Equation (2) are constrained to pass through the three 
trivial solutions (x, y) ⩵ (0, 0), (0, 1), and (1, 0).  Since x and y are interchangeable, the curves are 
symmetric about the line x ⩵ y.   Thus the curves are tilted so that they lie mainly in the first quadrant, 
and, for the hyperbola’s other branch, also in the third quadrant.  The curves cross the axes from the 
first quadrant into the second and fourth only for a short distance in between the trivial solution 
points.  All integer solutions for the ellipse and parabola will be non-negative, while the hyperbola may 
have negative solutions from its third-quadrant branch.  In all nontrivial integer solutions, x and y have 
the same sign.

The discriminant of Equation (2) is

In[80]:= Simplifyb2 - 4 a c /. {a → p, b → 2 (p - q), c → p}

Out[80]= 4 q (-2 p + q)

This is equal to 4 D, which is also the discriminant of Equation (8).  For purposes of determining sign or 
squareness we can ignore the factor of 4, so for simplicity we will call D the discriminant of the 
equation.

Since q > 0, the sign of D is that of q - 2 p.  Therefore the classification of the conic is

q < 2 p D < 0 ellipse
q ⩵ 2 p D ⩵ 0 parabola
q > 2 p D > 0 hyperbola

(12)

It is often convenient to work with the parameter

z ⩵
p

q

In terms of z Equation (8) becomes
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In[81]:= Simplify[uveqn[{u, v}] /. {p → z, q → 1}]

Out[81]= u2 + v2 (-1 + 2 z) ⩵ z2

and the classification of the conic is

z > 1 / 2 ellipse
z ⩵ 1 / 2 parabola
z < 1 / 2 hyperbola

(13)

For our problem, we restrict to 0 ≤ z ≤ 1 since it represents a probability, namely the probability of 
drawing balls of different colors.

Since the ellipse is a closed curve, the number of solutions possible for those cases is finite.  For the 
parabola and hyperbola, the number of solutions may be (and in many cases is) infinite.

Plotting the equations5.1.1 

Note on efficiency of Plot in Mathematica: it runs rather slowly ( ~ 0.5s on my laptop for these exam-
ples) if the Solve function is simply placed inside the Plot function.  One can use Evaluate to 
speed it up ( ~ 0.025 s, a factor of 20 better). However, using Evaluate around the Solve function is 
still slow, while using it around the whole y expression is fast but treats a two-valued curve as two 
curves in different colors.  The only solution I have found that yields fast plotting with a single color is 
to use an intermediate variable.

Parabola

First plot this example in (x, y)-space.  Force Mathematica to scale the axes the same so its shape is 
true.  Add grid lines to show the solution points where they intersect the curve.  

In[82]:= yvaluesforplot = Solve[xyeqn[{x, y}] /. {p → 1, q → 2}, y]

Out[82]= y →
1

2
1 + 2 x - 1 + 8 x , y →

1

2
1 + 2 x + 1 + 8 x 
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In[83]:= Plot[y /. yvaluesforplot, {x, -1, 11},
PlotRange → {{-1, 11}, {-1, 11}}, AspectRatio → 1,
GridLines → {{1, 3, 6, 10}, {1, 3, 6, 10}},
AxesLabel → {"x", "y"}]

Out[83]=

Now plot it in (t, v)-space, where the equation is t ⩵ v2:
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In[84]:= Plotv2, {v, -5, 5},

PlotRange → {{-5, 5}, {-1, 25}}, AspectRatio → 1,
GridLines → {{-4, -3, -2, -1, 1, 2, 3, 4}, {1, 4, 9, 16}},
AxesLabel → {"v", "t"}

Out[84]=

Ellipse

We use an example p /q ⩵ 8 /15, solved later, that has several integer solutions besides the trivial ones, 
namely (x, y) ⩵ (2, 4), (4, 6), (7, 8), and (8, 8) and their symmetric partners.  First, in (x, y)-space.
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In[85]:= yvaluesforplot = Solve[xyeqn[{x, y}] /. {p → 8, q → 15}, y];
Plot[y /. yvaluesforplot, {x, -1, 9},
PlotRange → {{-1, 9}, {-1, 9}}, AspectRatio → 1,
GridLines → {{2, 4, 6, 8}, {2, 4, 6, 8}},
AxesLabel → {"x", "y"}]

Out[86]=

Now in (t, v)-space.  First compute the grid points where solutions lie:

In[87]:= tvsolns8o15 = tvfromxy /@ {{0, 0}, {0, 1}, {2, 4}, {4, 6}, {7, 8}, {8, 8}}

Out[87]= {{0, 0}, {1, 1}, {6, 2}, {10, 2}, {15, 1}, {16, 0}}

The values of v can also be the negatives of these.
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In[88]:= tvaluesforplot = Solve[tveqn[{t, v}] /. {p → 8, q → 15}, t];
Plot[t /. tvaluesforplot, {v, -5 / 2, 5 / 2},
PlotRange → {{-10, 10}, {-2, 18}}, AspectRatio → 1,
GridLines → {{-2, -1, 1, 2}, {1, 6, 10, 15, 16}},
AxesLabel → {"v", "t"}]

Out[89]=

The ellipse is tangent to the x-axis.

Now in (u, v)-space.  Compute u values of solutions for grid lines.

In[90]:= uvsolns8o15 = (uvfromtv /@ tvsolns8o15) /. {p → 8, q → 15}

Out[90]= {{8, 0}, {7, 1}, {2, 2}, {-2, 2}, {-7, 1}, {-8, 0}}

The negatives of v are also allowable.

The plot has v on the horizontal axis and t vertically.
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In[91]:= uvaluesforplot = Solve[uveqn[{u, v}] /. {p → 8, q → 15}, u];
Plot[u /. uvaluesforplot, {v, -5 / 2, 5 / 2},
PlotRange → {{-9, 9}, {-9, 9}}, AspectRatio → 1,
GridLines → {{-2, -1, 1, 2}, {-8, -7, -2, 2, 7, 8}},
AxesLabel → {"v", "u"}]

Out[92]=

The ellipse is centered on the origin.  It is worth noting that the ellipse turns upside-down in going from 
(t, v)-space to (u, v)-space: t ⩵ 0 corresponds to u ⩵ 8 and t ⩵ 16 to u ⩵-8.

Hyperbola

For this example, for the sake of completeness we will include inadmissible negative solutions, with 
gridlines locating the integer points other than the trivial solutions.  This example p /q ⩵ 5 /11 has 
admissible solution (x, y) ⩵ (7, 15) as well as negative integer solutions (-5, -5), (-5, -6), (-12, -20) 
plus their symmetric partners.  It also has many other solutions not shown.  In (x, y)-space:
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In[93]:= yvaluesforplot = Solve[xyeqn[{x, y}] /. {p → 5, q → 11}, y];
Plot[y /. yvaluesforplot, {x, -25, 20},
PlotRange → {{-25, 20}, {-25, 20}},
AspectRatio → 1,
GridLines → {{-20, -12, -6, -5, 7, 15}, {-20, -12, -6, -5, 7, 15}},
AxesLabel → {"x", "y"}]

Out[94]=

Now plot it in (t, v)-space.  Compute the gridlines.  To avoid clutter we will only put the gridlines for the 
solutions away from the vertices.  Calculate the gridlines for solutions.

In[95]:= tvsolns5o11 = tvfromxy /@ {{-12, -20}, {7, 15}}

Out[95]= {{-32, -8}, {22, 8}}

The plot has v on the horizontal axis and u vertically.
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In[96]:= tvaluesforplot = Solve[tveqn[{t, v}] /. {p → 5, q → 11}, t];
Plot[t /. tvaluesforplot, {v, -10, 10},
PlotRange → {{-20, 20}, {-35, 30}}, AspectRatio → 1,
GridLines → {{-8, 8}, {-32, 22}},
AxesLabel → {"v", "t"}]

Out[97]=

The upper branch is tangent to the x-axis.  For this example, there are three integer solutions at each 
vertex.

Now plot it in (u, v)-space.

Calculate u values  for gridlines.

In[98]:= (uvfromtv /@ tvsolns5o11) /. {p → 5, q → 11}

Out[98]= {{-27, -8}, {27, 8}}
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In[99]:= uvaluesforplot = Solve[uveqn[{u, v}] /. {p → 5, q → 11}, u];
Plot[u /. uvaluesforplot, {v, -15, 15},
PlotRange → {{-15, 15}, {-40, 40}}, AspectRatio → 1,
GridLines → {{-8, 8}, {-27, 27}},
AxesLabel → {"v", "u"}]

Out[100]=

In these coordinates it is centered on the origin and aligned with the axes.  There are three integer 
solutions at each vertex.

What values of D are possible?5.1.2 

Answer: any odd value, positive or negative, and any multiple of 8, positive or negative or 0.  But no 
even values that are not multiples of 8.  Proof follows.  The definition of D is

D ⩵ q (q - 2 p)

Case of D ⩵ 0

The value D ⩵ 0 occurs only when p /q ⩵ 1 /2, since it requires q - 2 p ⩵ 0.

Case of odd D

Supposing D > 0 is odd, set D ⩵ 2 m + 1, m ≥ 0.  We can obtain this using

q ⩵ D ⩵ 2 m + 1, p ⩵
D - 1

2
⩵ m

Special case is m ⩵ 0, p ⩵ 0, q ⩵ 1, D ⩵ 1.  This is a legitimate probability of 0.  (All balls of same color, 
so that drawing balls of different colors is impossible.)

For m > 0 it is obvious that p ⩵ m and q ⩵ 2 m + 1 are relatively prime, so p /q is in lowest terms.  So all 
odd values of D > 0 are possible.  This implies all primes greater than 2 are possible values of D.
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For m > 0 it is obvious that p ⩵ m and q ⩵ 2 m + 1 are relatively prime, so p /q is in lowest terms.  So all 
odd values of D > 0 are possible.  This implies all primes greater than 2 are possible values of D.

There may be other ways to obtain the same D.  For instance, D ⩵ 21 results from the above with 
m ⩵ 10, which gives p /q ⩵ 10 /21, but also from p /q ⩵ 2 /7.

Supposing D < 0 is odd, set D ⩵-2 m + 1, m > 0.  We can obtain this using

q ⩵ -D ⩵ 2 m - 1, p ⩵
-D + 1

2
⩵ m

For m > 0, p ⩵ m and q ⩵ 2 m - 1 are relatively prime, giving p /q in lowest terms.  So all odd values of 
D < 0 are possible.  Again, there may be other ways to obtain the same D.

Case of even D

Now consider D even.  We can show that all positive multiples of 8 appear.  We saw above that D ⩵ 0 
results for p /q ⩵ 1 /2.  Zero is a multiple of 8.  For D > 0, set D ⩵ 8 m, m > 0.  We can obtain this using

p ⩵ 2 m - 1, q ⩵ 4 m ⇒ q (q - 2 p) ⩵ 4 m (4 m - 4 m + 2) ⩵ 8 m ⩵ D

This clearly gives p ⩵ 2 m - 1, q ⩵ 4 m relatively prime, so any positive multiple of 8 is obtainable.

For D < 0 even set D ⩵-8 m, m > 0.  Use

p ⩵ 2 m + 1, q ⩵ 4 m ⇒ q (q - 2 p) ⩵ 4 m (4 m - 4 m - 2) ⩵ -8 m ⩵ D

Multiples of 8 also appear for p ⩵ 1 with any even q:  put q ⩵ 2 m, m > 0.

D ⩵ q (q - 2 p) ⩵ 2 m (2 m - 2) ⩵ 4 m (m - 1)

One of m, m - 1 is even, so D is a multiple of 8.  In these cases only non-negative D appear.

Now prove the non-existence of even values of D that are not multiples of 8.  For D to be even, q must 
be even since q - 2 p is the same parity as q.  Put q ⩵ 2 m.

D ⩵ q (q - 2 p) ⩵ 2 m (2 m - 2 p) ⩵ 4 m (m - p)

Now, p must be odd to be relatively prime to q.  So one of m, m - p is even, making D a multiple of 8.  
QED.

There can be other ways to achieve the same D with different ratios.  For instance, setting m ⩵ 10 in the 
D < 0 case gives D ⩵-80, p /q ⩵ 21 /40, but D ⩵-80 also results from p /q ⩵ 9 /10.

Alternative ways to achieve the same D

As we saw above, there can be more than one p /q ratio for a given D.

In general, q must be a divisor of D.  Set d ⩵ D /q, then find p and see if it gives a valid probability ratio 
0 ≤ p /q ≤ 1.

In[101]:= Solve[q - 2 p ⩵ d, p]

Out[101]= p →
1

2
(-d + q)

20     odds-inversion.nb



In[102]:= Reduce0 ≤
q - d

2
≤ q && q > 0, d

Out[102]= q > 0 && -q ≤ d ≤ q

A valid probability will result so long as 0D1/q ≤ q or q ≥ 0D1 .  However, p /q obtained this way is not 
guaranteed to be in lowest terms.  We need to require p, q relatively prime.  Furthermore, for p to be 
integer requires q and d to be the same parity.  These conditions are sufficiently mild that there are 
many instances where more than one ratio gives the same D.

Trivial solutions5.2  
Above, we noted that there are always three trivial solutions to Equation (2), namely (x, y) ⩵ (0, 0), 
(0, 1), and (1, 0).  Mapping these to (u, v) we obtain

In[103]:= uvfromxy[{0, 0}]

Out[103]= {p, 0}

In[104]:= uvfromxy[{0, 1}]

Out[104]= {-p + q, 1}

In[105]:= uvfromxy[{1, 0}]

Out[105]= {-p + q, -1}

So the corresponding (u, v) solutions are (p, 0), (q - p, 1), and (q - p, -1).

Additional solutions that always exist if q ⩵ 2 p-15.2.1 

But note that if (u, v) is a solution to Equation (8), then so also is (±u, ±v).  This implies three more 
solutions obtained by changing the sign of u or v.  (Changing the sign of 0 of course does not give a 
different result.)  Mapping these back to (x, y), and verifying that they satisfy Equation (2):

In[106]:= {x, y} = Simplify[xyfromuv[{-p, 0}]]

Out[106]= 
p

2 p - q
,

p

2 p - q


In[107]:= Simplify[xyeqn[{x, y}]]

Out[107]= True

In[108]:= {x, y} = Simplify[xyfromuv[{p - q, 1}]]

Out[108]= 
-p + q

2 p - q
,

p

2 p - q


In[109]:= Simplify[xyeqn[{x, y}]]

Out[109]= True
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In[110]:= {x, y} = Simplify[xyfromuv[{p - q, -1}]]

Out[110]= 
p

2 p - q
,

-p + q

2 p - q


In[111]:= Simplify[xyeqn[{x, y}]]

Out[111]= True

In[112]:= Clear[x, y]

These correspond to points on the curve that are symmetric partners of the trivial solutions, i.e. at the 
far end of the ellipse or on the other branch of the hyperbola.  However, while in (u, v)-space these 
solutions are always integer, only in special cases are x, y integer.

These solutions will clearly be integer if 1 2 p - q0⩵ 1, i.e.  q ⩵ 2 p ± 1.  This is an if and only if, for 
suppose that there is some  k ⩵02 p - q1 > 1 that divides p, then k also divides q, contradicting p and q 
relatively prime.  For these integer solutions, the numerators simplify:

In[113]:= Simplify[-p + q /. {q → 2 p - 1}]

Out[113]= -1 + p

In[114]:= Simplify[-p + q /. {q → 2 p + 1}]

Out[114]= 1 + p

These three additional solutions will be positive only if 2 p - q > 0, i.e. p /q > 1 /2.  Hence they are admissi-
ble only for q ⩵ 2 p - 1, and negative for q ⩵ 2 p + 1.

So we already have one result: for ratios of form p
2 p-1

, there always exist three solutions (x, y) ⩵ (p, p), 

(p - 1, p), and (p, p - 1).  If p > 1 these are all admissible.

For hyperbolic ratios of the form p
2 p+1

, there are integer solutions (x, y) ⩵ (-p, -p), (-p - 1, -p), and 

(-p, -p - 1).  These are not admissible since they are negative.  The examples plotted in Section 5.1.1 
are of these forms.

Reverse search5.3  
An initial approach I took was to reverse the problem by computing p /q ratios resulting from the 
probability equation (1) for all values of x and y below 1000 using a simple program written in Python.  
Usefully, Python has a Fraction class in the fraction package, which automatically reduces 
fractions to lowest terms.  (It also has unlimited precision integer arithmetic.)  I sorted the resulting list 
by p /q ratio, displaying all the distinct (x, y) pairs (omitting the symmetric partners) for each ratio.

Here is the Python3 code for the search.
# Performs reverse search for red-blue balls puzzle.
# Calculates probability of balls being different colors for all (x,y) 
pairs
# with 1 <= x <= y < nmax.
import sys
from fractions import Fraction

# optional first argument is range of search, default 100
if len(sys.argv) > 1:
    nmax = int(sys.argv[1])
else:
    nmax = 100
    
result_list = {}

for y in range(1,nmax): # range does not include second value
    for x in range(1,y+1):
        n = y+x
        odds_differ = Fraction(2*y*x,n*(n-1))
        if odds_differ in result_list:
            result_list[odds_differ] += [ [x,y,n] ]
        else:
            result_list[odds_differ] = [ [x,y,n] ]

print(“nmax=”,nmax)
print(“odds”,”[R,B,N]”)
for f in sorted(result_list):
    print(f,result_list[f])
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# Performs reverse search for red-blue balls puzzle.
# Calculates probability of balls being different colors for all (x,y) 
pairs
# with 1 <= x <= y < nmax.
import sys
from fractions import Fraction

# optional first argument is range of search, default 100
if len(sys.argv) > 1:
    nmax = int(sys.argv[1])
else:
    nmax = 100
    
result_list = {}

for y in range(1,nmax): # range does not include second value
    for x in range(1,y+1):
        n = y+x
        odds_differ = Fraction(2*y*x,n*(n-1))
        if odds_differ in result_list:
            result_list[odds_differ] += [ [x,y,n] ]
        else:
            result_list[odds_differ] = [ [x,y,n] ]

print(“nmax=”,nmax)
print(“odds”,”[R,B,N]”)
for f in sorted(result_list):
    print(f,result_list[f])

I ran this search with nmax set to 1000, i.e. x, y ≤ 999.  (It took only about 47 seconds on my laptop.)  
The number of (x, y) pairs included in the search was   

In[115]:= n (n + 1) / 2 /. n → 999

Out[115]= 499500

The output contained 494 396 lines, indicating that most of the ratios generated had only one solution 
within the range of the search.

Inspection of the results showed some interesting patterns, suggesting avenues to explore.  These will 
be mentioned in later sections.

Selected results of reverse search5.3.1 

Here are some results of the reverse search, selecting ratios with p of one digit and q of one or two 
digits.  Each line has the ratio p /q followed by a list of solutions in the form of triplets {x, y, x + y}.  Only 
distinct solutions with x ≤ y are listed.  They are in order of ascending p /q.  The ratios from 1 /98 
through 2 /41 are suppressed to save space, since they follow the same pattern as 1 /20 through 1 /17.

1/99 {{1, 197, 198}}
 [108 lines omitted]
1/20 {{1, 39, 40}}
2/39 {{1, 38, 39}}
1/19 {{1, 37, 38}}
2/37 {{1, 36, 37}}
1/18 {{1, 35, 36}}
2/35 {{1, 34, 35}}
1/17 {{1, 33, 34}}
2/33 {{1, 32, 33}, {32, 992, 1024}}
1/16 {{1, 31, 32}, {31, 930, 961}}
2/31 {{1, 30, 31}, {30, 870, 900}}
1/15 {{1, 29, 30}, {29, 812, 841}}
2/29 {{1, 28, 29}, {28, 756, 784}}
1/14 {{1, 27, 28}, {27, 702, 729}}
2/27 {{1, 26, 27}, {26, 650, 676}}
1/13 {{1, 25, 26}, {25, 600, 625}}
2/25 {{1, 24, 25}, {24, 552, 576}}
1/12 {{1, 23, 24}, {23, 506, 529}}
2/23 {{1, 22, 23}, {22, 462, 484}}
1/11 {{1, 21, 22}, {21, 420, 441}}
2/21 {{1, 20, 21}, {20, 380, 400}}
1/10 {{1, 19, 20}, {19, 342, 361}}
9/88 {{38, 666, 704}}
2/19 {{1, 18, 19}, {18, 306, 324}}
1/9 {{1, 17, 18}, {17, 272, 289}}
2/17 {{1, 16, 17}, {16, 240, 256}}
9/76 {{6, 90, 96}}
5/42 {{4, 60, 64}, {60, 885, 945}}
3/25 {{40, 585, 625}}
5/41 {{24, 345, 369}}
1/8 {{1, 15, 16}, {15, 210, 225}}
7/55 {{3, 42, 45}, {42, 574, 616}}
9/70 {{58, 783, 841}}
2/15 {{1, 14, 15}, {14, 182, 196}}
7/51 {{10, 126, 136}}
5/36 {{6, 75, 81}, {75, 925, 1000}}
1/7 {{1, 13, 14}, {13, 156, 169}}
8/55 {{39, 456, 495}}
2/13 {{1, 12, 13}, {12, 132, 144}}
7/44 {{46, 483, 529}}
1/6 {{1, 11, 12}, {11, 110, 121}}
5/29 {{22, 210, 232}}
7/40 {{93, 868, 961}}
2/11 {{1, 10, 11}, {10, 90, 100}, {90, 801, 891}}
9/49 {{5, 45, 50}, {45, 396, 441}}
9/47 {{15, 126, 141}}
5/26 {{21, 175, 196}}
1/5 {{1, 9, 10}, {9, 72, 81}, {72, 568, 640}}
8/39 {{3, 24, 27}, {24, 184, 208}}
5/24 {{34, 255, 289}}
9/41 {{5, 36, 41}, {36, 252, 288}}
2/9 {{1, 8, 9}, {8, 56, 64}, {56, 385, 441}}
9/40 {{124, 837, 961}}
7/31 {{4, 28, 32}, {28, 189, 217}}
5/22 {{69, 460, 529}}
8/35 {{115, 760, 875}}
7/30 {{2, 14, 16}, {14, 91, 105}, {91, 585, 676}}
5/21 {{116, 725, 841}}
1/4 {{1, 7, 8}, {7, 42, 49}, {42, 246, 288}}
9/35 {{3, 18, 21}, {18, 102, 120}}
6/23 {{14, 78, 92}, {78, 429, 507}}
9/34 {{40, 216, 256}}
4/15 {{57, 304, 361}}
7/26 {{100, 525, 625}}
7/25 {{4, 21, 25}, {21, 105, 126}, {105, 520, 625}}
2/7 {{1, 6, 7}, {6, 30, 36}, {30, 145, 175}, {145, 696, 841}}
7/24 {{51, 238, 289}}
5/17 {{3, 15, 18}, {15, 70, 85}, {70, 322, 392}}
3/10 {{22, 99, 121}, {99, 441, 540}}
5/16 {{186, 775, 961}}
9/28 {{11, 45, 56}, {45, 180, 225}, {180, 716, 896}}
1/3 {{1, 5, 6}, {5, 20, 25}, {20, 76, 96}, {76, 285, 361}}
9/26 {{46, 162, 208}, {162, 567, 729}}
8/23 {{10, 36, 46}, {36, 126, 162}}
7/20 {{18, 63, 81}, {63, 217, 280}, {217, 744, 961}}
6/17 {{280, 945, 1225}}
5/14 {{39, 130, 169}, {130, 430, 560}}
9/25 {{188, 612, 800}}
4/11 {{105, 336, 441}}
8/21 {{5, 16, 21}, {16, 48, 64}, {48, 141, 189}}
5/13 {{3, 10, 13}, {10, 30, 40}, {30, 87, 117}, {189, 540, 729}}
7/18 {{2, 7, 9}, {7, 21, 28}, {21, 60, 81}, {95, 266, 361}, {266, 742, 1008}}
9/23 {{6, 18, 24}, {18, 51, 69}, {196, 540, 736}}
2/5 {{1, 4, 5}, {4, 12, 16}, {12, 33, 45}, {33, 88, 121}, {88, 232, 320}, {232, 609, 841}}
9/22 {{3, 9, 12}, {9, 24, 33}, {50, 126, 176}, {126, 315, 441}, {315, 785, 1100}}
5/12 {{14, 35, 49}, {35, 85, 120}, {85, 204, 289}}
8/19 {{51, 120, 171}, {120, 280, 400}, {280, 651, 931}}
3/7 {{2, 6, 8}, {6, 15, 21}, {15, 35, 50}, {52, 117, 169}, {117, 261, 378}, {261, 580, 841}}
7/16 {{310, 651, 961}}
9/20 {{13, 27, 40}, {27, 54, 81}, {54, 106, 160}}
5/11 {{7, 15, 22}, {15, 30, 45}, {30, 58, 88}, {184, 345, 529}, {345, 645, 990}}
6/13 {{4, 9, 13}, {9, 18, 27}, {18, 34, 52}, {70, 126, 196}, {126, 225, 351}, {225, 400, 625}}
7/15 {{3, 7, 10}, {7, 14, 21}, {14, 26, 40}, {44, 77, 121}, {77, 133, 210}, {133, 228, 361}, {370, 630, 1000}}
8/17 {{6, 12, 18}, {12, 22, 34}, {57, 96, 153}, {96, 160, 256}, {160, 265, 425}}
9/19 {{21, 36, 57}, {36, 60, 96}, {365, 585, 950}, {585, 936, 1521}}
1/2 {{1, 3, 4}, {3, 6, 9}, {6, 10, 16}, {10, 15, 25}, {15, 21, 36}, {21, 28, 49}, {28, 36, 64}, {36, 45, 81}, {45, 55, 
100}, {55, 66, 121}, {66, 78, 144}, {78, 91, 169}, {91, 105, 196}, {105, 120, 225}, {120, 136, 256}, {136, 153, 
289}, {153, 171, 324}, {171, 190, 361}, {190, 210, 400}, {210, 231, 441}, {231, 253, 484}, {253, 276, 529}, {276, 
300, 576}, {300, 325, 625}, {325, 351, 676}, {351, 378, 729}, {378, 406, 784}, {406, 435, 841}, {435, 465, 900}, 
{465, 496, 961}, {496, 528, 1024}, {528, 561, 1089}, {561, 595, 1156}, {595, 630, 1225}, {630, 666, 1296}, 
{666, 703, 1369}, {703, 741, 1444}, {741, 780, 1521}, {780, 820, 1600}, {820, 861, 1681}, {861, 903, 1764}, 
{903, 946, 1849}, {946, 990, 1936}}
9/17 {{8, 9, 17}, {9, 9, 18}}
8/15 {{2, 4, 6}, {4, 6, 10}, {7, 8, 15}, {8, 8, 16}}
7/13 {{6, 7, 13}, {7, 7, 14}}
6/11 {{5, 6, 11}, {6, 6, 12}}
5/9 {{4, 5, 9}, {5, 5, 10}}
4/7 {{3, 4, 7}, {4, 4, 8}}
3/5 {{2, 3, 5}, {3, 3, 6}}
2/3 {{1, 2, 3}, {2, 2, 4}}
1/1 [[1, 1, 2]]

odds-inversion.nb     23



1/99 {{1, 197, 198}}
 [108 lines omitted]
1/20 {{1, 39, 40}}
2/39 {{1, 38, 39}}
1/19 {{1, 37, 38}}
2/37 {{1, 36, 37}}
1/18 {{1, 35, 36}}
2/35 {{1, 34, 35}}
1/17 {{1, 33, 34}}
2/33 {{1, 32, 33}, {32, 992, 1024}}
1/16 {{1, 31, 32}, {31, 930, 961}}
2/31 {{1, 30, 31}, {30, 870, 900}}
1/15 {{1, 29, 30}, {29, 812, 841}}
2/29 {{1, 28, 29}, {28, 756, 784}}
1/14 {{1, 27, 28}, {27, 702, 729}}
2/27 {{1, 26, 27}, {26, 650, 676}}
1/13 {{1, 25, 26}, {25, 600, 625}}
2/25 {{1, 24, 25}, {24, 552, 576}}
1/12 {{1, 23, 24}, {23, 506, 529}}
2/23 {{1, 22, 23}, {22, 462, 484}}
1/11 {{1, 21, 22}, {21, 420, 441}}
2/21 {{1, 20, 21}, {20, 380, 400}}
1/10 {{1, 19, 20}, {19, 342, 361}}
9/88 {{38, 666, 704}}
2/19 {{1, 18, 19}, {18, 306, 324}}
1/9 {{1, 17, 18}, {17, 272, 289}}
2/17 {{1, 16, 17}, {16, 240, 256}}
9/76 {{6, 90, 96}}
5/42 {{4, 60, 64}, {60, 885, 945}}
3/25 {{40, 585, 625}}
5/41 {{24, 345, 369}}
1/8 {{1, 15, 16}, {15, 210, 225}}
7/55 {{3, 42, 45}, {42, 574, 616}}
9/70 {{58, 783, 841}}
2/15 {{1, 14, 15}, {14, 182, 196}}
7/51 {{10, 126, 136}}
5/36 {{6, 75, 81}, {75, 925, 1000}}
1/7 {{1, 13, 14}, {13, 156, 169}}
8/55 {{39, 456, 495}}
2/13 {{1, 12, 13}, {12, 132, 144}}
7/44 {{46, 483, 529}}
1/6 {{1, 11, 12}, {11, 110, 121}}
5/29 {{22, 210, 232}}
7/40 {{93, 868, 961}}
2/11 {{1, 10, 11}, {10, 90, 100}, {90, 801, 891}}
9/49 {{5, 45, 50}, {45, 396, 441}}
9/47 {{15, 126, 141}}
5/26 {{21, 175, 196}}
1/5 {{1, 9, 10}, {9, 72, 81}, {72, 568, 640}}
8/39 {{3, 24, 27}, {24, 184, 208}}
5/24 {{34, 255, 289}}
9/41 {{5, 36, 41}, {36, 252, 288}}
2/9 {{1, 8, 9}, {8, 56, 64}, {56, 385, 441}}
9/40 {{124, 837, 961}}
7/31 {{4, 28, 32}, {28, 189, 217}}
5/22 {{69, 460, 529}}
8/35 {{115, 760, 875}}
7/30 {{2, 14, 16}, {14, 91, 105}, {91, 585, 676}}
5/21 {{116, 725, 841}}
1/4 {{1, 7, 8}, {7, 42, 49}, {42, 246, 288}}
9/35 {{3, 18, 21}, {18, 102, 120}}
6/23 {{14, 78, 92}, {78, 429, 507}}
9/34 {{40, 216, 256}}
4/15 {{57, 304, 361}}
7/26 {{100, 525, 625}}
7/25 {{4, 21, 25}, {21, 105, 126}, {105, 520, 625}}
2/7 {{1, 6, 7}, {6, 30, 36}, {30, 145, 175}, {145, 696, 841}}
7/24 {{51, 238, 289}}
5/17 {{3, 15, 18}, {15, 70, 85}, {70, 322, 392}}
3/10 {{22, 99, 121}, {99, 441, 540}}
5/16 {{186, 775, 961}}
9/28 {{11, 45, 56}, {45, 180, 225}, {180, 716, 896}}
1/3 {{1, 5, 6}, {5, 20, 25}, {20, 76, 96}, {76, 285, 361}}
9/26 {{46, 162, 208}, {162, 567, 729}}
8/23 {{10, 36, 46}, {36, 126, 162}}
7/20 {{18, 63, 81}, {63, 217, 280}, {217, 744, 961}}
6/17 {{280, 945, 1225}}
5/14 {{39, 130, 169}, {130, 430, 560}}
9/25 {{188, 612, 800}}
4/11 {{105, 336, 441}}
8/21 {{5, 16, 21}, {16, 48, 64}, {48, 141, 189}}
5/13 {{3, 10, 13}, {10, 30, 40}, {30, 87, 117}, {189, 540, 729}}
7/18 {{2, 7, 9}, {7, 21, 28}, {21, 60, 81}, {95, 266, 361}, {266, 742, 1008}}
9/23 {{6, 18, 24}, {18, 51, 69}, {196, 540, 736}}
2/5 {{1, 4, 5}, {4, 12, 16}, {12, 33, 45}, {33, 88, 121}, {88, 232, 320}, {232, 609, 841}}
9/22 {{3, 9, 12}, {9, 24, 33}, {50, 126, 176}, {126, 315, 441}, {315, 785, 1100}}
5/12 {{14, 35, 49}, {35, 85, 120}, {85, 204, 289}}
8/19 {{51, 120, 171}, {120, 280, 400}, {280, 651, 931}}
3/7 {{2, 6, 8}, {6, 15, 21}, {15, 35, 50}, {52, 117, 169}, {117, 261, 378}, {261, 580, 841}}
7/16 {{310, 651, 961}}
9/20 {{13, 27, 40}, {27, 54, 81}, {54, 106, 160}}
5/11 {{7, 15, 22}, {15, 30, 45}, {30, 58, 88}, {184, 345, 529}, {345, 645, 990}}
6/13 {{4, 9, 13}, {9, 18, 27}, {18, 34, 52}, {70, 126, 196}, {126, 225, 351}, {225, 400, 625}}
7/15 {{3, 7, 10}, {7, 14, 21}, {14, 26, 40}, {44, 77, 121}, {77, 133, 210}, {133, 228, 361}, {370, 630, 1000}}
8/17 {{6, 12, 18}, {12, 22, 34}, {57, 96, 153}, {96, 160, 256}, {160, 265, 425}}
9/19 {{21, 36, 57}, {36, 60, 96}, {365, 585, 950}, {585, 936, 1521}}
1/2 {{1, 3, 4}, {3, 6, 9}, {6, 10, 16}, {10, 15, 25}, {15, 21, 36}, {21, 28, 49}, {28, 36, 64}, {36, 45, 81}, {45, 55, 
100}, {55, 66, 121}, {66, 78, 144}, {78, 91, 169}, {91, 105, 196}, {105, 120, 225}, {120, 136, 256}, {136, 153, 
289}, {153, 171, 324}, {171, 190, 361}, {190, 210, 400}, {210, 231, 441}, {231, 253, 484}, {253, 276, 529}, {276, 
300, 576}, {300, 325, 625}, {325, 351, 676}, {351, 378, 729}, {378, 406, 784}, {406, 435, 841}, {435, 465, 900}, 
{465, 496, 961}, {496, 528, 1024}, {528, 561, 1089}, {561, 595, 1156}, {595, 630, 1225}, {630, 666, 1296}, 
{666, 703, 1369}, {703, 741, 1444}, {741, 780, 1521}, {780, 820, 1600}, {820, 861, 1681}, {861, 903, 1764}, 
{903, 946, 1849}, {946, 990, 1936}}
9/17 {{8, 9, 17}, {9, 9, 18}}
8/15 {{2, 4, 6}, {4, 6, 10}, {7, 8, 15}, {8, 8, 16}}
7/13 {{6, 7, 13}, {7, 7, 14}}
6/11 {{5, 6, 11}, {6, 6, 12}}
5/9 {{4, 5, 9}, {5, 5, 10}}
4/7 {{3, 4, 7}, {4, 4, 8}}
3/5 {{2, 3, 5}, {3, 3, 6}}
2/3 {{1, 2, 3}, {2, 2, 4}}
1/1 [[1, 1, 2]]
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1/99 {{1, 197, 198}}
 [108 lines omitted]
1/20 {{1, 39, 40}}
2/39 {{1, 38, 39}}
1/19 {{1, 37, 38}}
2/37 {{1, 36, 37}}
1/18 {{1, 35, 36}}
2/35 {{1, 34, 35}}
1/17 {{1, 33, 34}}
2/33 {{1, 32, 33}, {32, 992, 1024}}
1/16 {{1, 31, 32}, {31, 930, 961}}
2/31 {{1, 30, 31}, {30, 870, 900}}
1/15 {{1, 29, 30}, {29, 812, 841}}
2/29 {{1, 28, 29}, {28, 756, 784}}
1/14 {{1, 27, 28}, {27, 702, 729}}
2/27 {{1, 26, 27}, {26, 650, 676}}
1/13 {{1, 25, 26}, {25, 600, 625}}
2/25 {{1, 24, 25}, {24, 552, 576}}
1/12 {{1, 23, 24}, {23, 506, 529}}
2/23 {{1, 22, 23}, {22, 462, 484}}
1/11 {{1, 21, 22}, {21, 420, 441}}
2/21 {{1, 20, 21}, {20, 380, 400}}
1/10 {{1, 19, 20}, {19, 342, 361}}
9/88 {{38, 666, 704}}
2/19 {{1, 18, 19}, {18, 306, 324}}
1/9 {{1, 17, 18}, {17, 272, 289}}
2/17 {{1, 16, 17}, {16, 240, 256}}
9/76 {{6, 90, 96}}
5/42 {{4, 60, 64}, {60, 885, 945}}
3/25 {{40, 585, 625}}
5/41 {{24, 345, 369}}
1/8 {{1, 15, 16}, {15, 210, 225}}
7/55 {{3, 42, 45}, {42, 574, 616}}
9/70 {{58, 783, 841}}
2/15 {{1, 14, 15}, {14, 182, 196}}
7/51 {{10, 126, 136}}
5/36 {{6, 75, 81}, {75, 925, 1000}}
1/7 {{1, 13, 14}, {13, 156, 169}}
8/55 {{39, 456, 495}}
2/13 {{1, 12, 13}, {12, 132, 144}}
7/44 {{46, 483, 529}}
1/6 {{1, 11, 12}, {11, 110, 121}}
5/29 {{22, 210, 232}}
7/40 {{93, 868, 961}}
2/11 {{1, 10, 11}, {10, 90, 100}, {90, 801, 891}}
9/49 {{5, 45, 50}, {45, 396, 441}}
9/47 {{15, 126, 141}}
5/26 {{21, 175, 196}}
1/5 {{1, 9, 10}, {9, 72, 81}, {72, 568, 640}}
8/39 {{3, 24, 27}, {24, 184, 208}}
5/24 {{34, 255, 289}}
9/41 {{5, 36, 41}, {36, 252, 288}}
2/9 {{1, 8, 9}, {8, 56, 64}, {56, 385, 441}}
9/40 {{124, 837, 961}}
7/31 {{4, 28, 32}, {28, 189, 217}}
5/22 {{69, 460, 529}}
8/35 {{115, 760, 875}}
7/30 {{2, 14, 16}, {14, 91, 105}, {91, 585, 676}}
5/21 {{116, 725, 841}}
1/4 {{1, 7, 8}, {7, 42, 49}, {42, 246, 288}}
9/35 {{3, 18, 21}, {18, 102, 120}}
6/23 {{14, 78, 92}, {78, 429, 507}}
9/34 {{40, 216, 256}}
4/15 {{57, 304, 361}}
7/26 {{100, 525, 625}}
7/25 {{4, 21, 25}, {21, 105, 126}, {105, 520, 625}}
2/7 {{1, 6, 7}, {6, 30, 36}, {30, 145, 175}, {145, 696, 841}}
7/24 {{51, 238, 289}}
5/17 {{3, 15, 18}, {15, 70, 85}, {70, 322, 392}}
3/10 {{22, 99, 121}, {99, 441, 540}}
5/16 {{186, 775, 961}}
9/28 {{11, 45, 56}, {45, 180, 225}, {180, 716, 896}}
1/3 {{1, 5, 6}, {5, 20, 25}, {20, 76, 96}, {76, 285, 361}}
9/26 {{46, 162, 208}, {162, 567, 729}}
8/23 {{10, 36, 46}, {36, 126, 162}}
7/20 {{18, 63, 81}, {63, 217, 280}, {217, 744, 961}}
6/17 {{280, 945, 1225}}
5/14 {{39, 130, 169}, {130, 430, 560}}
9/25 {{188, 612, 800}}
4/11 {{105, 336, 441}}
8/21 {{5, 16, 21}, {16, 48, 64}, {48, 141, 189}}
5/13 {{3, 10, 13}, {10, 30, 40}, {30, 87, 117}, {189, 540, 729}}
7/18 {{2, 7, 9}, {7, 21, 28}, {21, 60, 81}, {95, 266, 361}, {266, 742, 1008}}
9/23 {{6, 18, 24}, {18, 51, 69}, {196, 540, 736}}
2/5 {{1, 4, 5}, {4, 12, 16}, {12, 33, 45}, {33, 88, 121}, {88, 232, 320}, {232, 609, 841}}
9/22 {{3, 9, 12}, {9, 24, 33}, {50, 126, 176}, {126, 315, 441}, {315, 785, 1100}}
5/12 {{14, 35, 49}, {35, 85, 120}, {85, 204, 289}}
8/19 {{51, 120, 171}, {120, 280, 400}, {280, 651, 931}}
3/7 {{2, 6, 8}, {6, 15, 21}, {15, 35, 50}, {52, 117, 169}, {117, 261, 378}, {261, 580, 841}}
7/16 {{310, 651, 961}}
9/20 {{13, 27, 40}, {27, 54, 81}, {54, 106, 160}}
5/11 {{7, 15, 22}, {15, 30, 45}, {30, 58, 88}, {184, 345, 529}, {345, 645, 990}}
6/13 {{4, 9, 13}, {9, 18, 27}, {18, 34, 52}, {70, 126, 196}, {126, 225, 351}, {225, 400, 625}}
7/15 {{3, 7, 10}, {7, 14, 21}, {14, 26, 40}, {44, 77, 121}, {77, 133, 210}, {133, 228, 361}, {370, 630, 1000}}
8/17 {{6, 12, 18}, {12, 22, 34}, {57, 96, 153}, {96, 160, 256}, {160, 265, 425}}
9/19 {{21, 36, 57}, {36, 60, 96}, {365, 585, 950}, {585, 936, 1521}}
1/2 {{1, 3, 4}, {3, 6, 9}, {6, 10, 16}, {10, 15, 25}, {15, 21, 36}, {21, 28, 49}, {28, 36, 64}, {36, 45, 81}, {45, 55, 
100}, {55, 66, 121}, {66, 78, 144}, {78, 91, 169}, {91, 105, 196}, {105, 120, 225}, {120, 136, 256}, {136, 153, 
289}, {153, 171, 324}, {171, 190, 361}, {190, 210, 400}, {210, 231, 441}, {231, 253, 484}, {253, 276, 529}, {276, 
300, 576}, {300, 325, 625}, {325, 351, 676}, {351, 378, 729}, {378, 406, 784}, {406, 435, 841}, {435, 465, 900}, 
{465, 496, 961}, {496, 528, 1024}, {528, 561, 1089}, {561, 595, 1156}, {595, 630, 1225}, {630, 666, 1296}, 
{666, 703, 1369}, {703, 741, 1444}, {741, 780, 1521}, {780, 820, 1600}, {820, 861, 1681}, {861, 903, 1764}, 
{903, 946, 1849}, {946, 990, 1936}}
9/17 {{8, 9, 17}, {9, 9, 18}}
8/15 {{2, 4, 6}, {4, 6, 10}, {7, 8, 15}, {8, 8, 16}}
7/13 {{6, 7, 13}, {7, 7, 14}}
6/11 {{5, 6, 11}, {6, 6, 12}}
5/9 {{4, 5, 9}, {5, 5, 10}}
4/7 {{3, 4, 7}, {4, 4, 8}}
3/5 {{2, 3, 5}, {3, 3, 6}}
2/3 {{1, 2, 3}, {2, 2, 4}}
1/1 [[1, 1, 2]]
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1/99 {{1, 197, 198}}
 [108 lines omitted]
1/20 {{1, 39, 40}}
2/39 {{1, 38, 39}}
1/19 {{1, 37, 38}}
2/37 {{1, 36, 37}}
1/18 {{1, 35, 36}}
2/35 {{1, 34, 35}}
1/17 {{1, 33, 34}}
2/33 {{1, 32, 33}, {32, 992, 1024}}
1/16 {{1, 31, 32}, {31, 930, 961}}
2/31 {{1, 30, 31}, {30, 870, 900}}
1/15 {{1, 29, 30}, {29, 812, 841}}
2/29 {{1, 28, 29}, {28, 756, 784}}
1/14 {{1, 27, 28}, {27, 702, 729}}
2/27 {{1, 26, 27}, {26, 650, 676}}
1/13 {{1, 25, 26}, {25, 600, 625}}
2/25 {{1, 24, 25}, {24, 552, 576}}
1/12 {{1, 23, 24}, {23, 506, 529}}
2/23 {{1, 22, 23}, {22, 462, 484}}
1/11 {{1, 21, 22}, {21, 420, 441}}
2/21 {{1, 20, 21}, {20, 380, 400}}
1/10 {{1, 19, 20}, {19, 342, 361}}
9/88 {{38, 666, 704}}
2/19 {{1, 18, 19}, {18, 306, 324}}
1/9 {{1, 17, 18}, {17, 272, 289}}
2/17 {{1, 16, 17}, {16, 240, 256}}
9/76 {{6, 90, 96}}
5/42 {{4, 60, 64}, {60, 885, 945}}
3/25 {{40, 585, 625}}
5/41 {{24, 345, 369}}
1/8 {{1, 15, 16}, {15, 210, 225}}
7/55 {{3, 42, 45}, {42, 574, 616}}
9/70 {{58, 783, 841}}
2/15 {{1, 14, 15}, {14, 182, 196}}
7/51 {{10, 126, 136}}
5/36 {{6, 75, 81}, {75, 925, 1000}}
1/7 {{1, 13, 14}, {13, 156, 169}}
8/55 {{39, 456, 495}}
2/13 {{1, 12, 13}, {12, 132, 144}}
7/44 {{46, 483, 529}}
1/6 {{1, 11, 12}, {11, 110, 121}}
5/29 {{22, 210, 232}}
7/40 {{93, 868, 961}}
2/11 {{1, 10, 11}, {10, 90, 100}, {90, 801, 891}}
9/49 {{5, 45, 50}, {45, 396, 441}}
9/47 {{15, 126, 141}}
5/26 {{21, 175, 196}}
1/5 {{1, 9, 10}, {9, 72, 81}, {72, 568, 640}}
8/39 {{3, 24, 27}, {24, 184, 208}}
5/24 {{34, 255, 289}}
9/41 {{5, 36, 41}, {36, 252, 288}}
2/9 {{1, 8, 9}, {8, 56, 64}, {56, 385, 441}}
9/40 {{124, 837, 961}}
7/31 {{4, 28, 32}, {28, 189, 217}}
5/22 {{69, 460, 529}}
8/35 {{115, 760, 875}}
7/30 {{2, 14, 16}, {14, 91, 105}, {91, 585, 676}}
5/21 {{116, 725, 841}}
1/4 {{1, 7, 8}, {7, 42, 49}, {42, 246, 288}}
9/35 {{3, 18, 21}, {18, 102, 120}}
6/23 {{14, 78, 92}, {78, 429, 507}}
9/34 {{40, 216, 256}}
4/15 {{57, 304, 361}}
7/26 {{100, 525, 625}}
7/25 {{4, 21, 25}, {21, 105, 126}, {105, 520, 625}}
2/7 {{1, 6, 7}, {6, 30, 36}, {30, 145, 175}, {145, 696, 841}}
7/24 {{51, 238, 289}}
5/17 {{3, 15, 18}, {15, 70, 85}, {70, 322, 392}}
3/10 {{22, 99, 121}, {99, 441, 540}}
5/16 {{186, 775, 961}}
9/28 {{11, 45, 56}, {45, 180, 225}, {180, 716, 896}}
1/3 {{1, 5, 6}, {5, 20, 25}, {20, 76, 96}, {76, 285, 361}}
9/26 {{46, 162, 208}, {162, 567, 729}}
8/23 {{10, 36, 46}, {36, 126, 162}}
7/20 {{18, 63, 81}, {63, 217, 280}, {217, 744, 961}}
6/17 {{280, 945, 1225}}
5/14 {{39, 130, 169}, {130, 430, 560}}
9/25 {{188, 612, 800}}
4/11 {{105, 336, 441}}
8/21 {{5, 16, 21}, {16, 48, 64}, {48, 141, 189}}
5/13 {{3, 10, 13}, {10, 30, 40}, {30, 87, 117}, {189, 540, 729}}
7/18 {{2, 7, 9}, {7, 21, 28}, {21, 60, 81}, {95, 266, 361}, {266, 742, 1008}}
9/23 {{6, 18, 24}, {18, 51, 69}, {196, 540, 736}}
2/5 {{1, 4, 5}, {4, 12, 16}, {12, 33, 45}, {33, 88, 121}, {88, 232, 320}, {232, 609, 841}}
9/22 {{3, 9, 12}, {9, 24, 33}, {50, 126, 176}, {126, 315, 441}, {315, 785, 1100}}
5/12 {{14, 35, 49}, {35, 85, 120}, {85, 204, 289}}
8/19 {{51, 120, 171}, {120, 280, 400}, {280, 651, 931}}
3/7 {{2, 6, 8}, {6, 15, 21}, {15, 35, 50}, {52, 117, 169}, {117, 261, 378}, {261, 580, 841}}
7/16 {{310, 651, 961}}
9/20 {{13, 27, 40}, {27, 54, 81}, {54, 106, 160}}
5/11 {{7, 15, 22}, {15, 30, 45}, {30, 58, 88}, {184, 345, 529}, {345, 645, 990}}
6/13 {{4, 9, 13}, {9, 18, 27}, {18, 34, 52}, {70, 126, 196}, {126, 225, 351}, {225, 400, 625}}
7/15 {{3, 7, 10}, {7, 14, 21}, {14, 26, 40}, {44, 77, 121}, {77, 133, 210}, {133, 228, 361}, {370, 630, 1000}}
8/17 {{6, 12, 18}, {12, 22, 34}, {57, 96, 153}, {96, 160, 256}, {160, 265, 425}}
9/19 {{21, 36, 57}, {36, 60, 96}, {365, 585, 950}, {585, 936, 1521}}
1/2 {{1, 3, 4}, {3, 6, 9}, {6, 10, 16}, {10, 15, 25}, {15, 21, 36}, {21, 28, 49}, {28, 36, 64}, {36, 45, 81}, {45, 55, 
100}, {55, 66, 121}, {66, 78, 144}, {78, 91, 169}, {91, 105, 196}, {105, 120, 225}, {120, 136, 256}, {136, 153, 
289}, {153, 171, 324}, {171, 190, 361}, {190, 210, 400}, {210, 231, 441}, {231, 253, 484}, {253, 276, 529}, {276, 
300, 576}, {300, 325, 625}, {325, 351, 676}, {351, 378, 729}, {378, 406, 784}, {406, 435, 841}, {435, 465, 900}, 
{465, 496, 961}, {496, 528, 1024}, {528, 561, 1089}, {561, 595, 1156}, {595, 630, 1225}, {630, 666, 1296}, 
{666, 703, 1369}, {703, 741, 1444}, {741, 780, 1521}, {780, 820, 1600}, {820, 861, 1681}, {861, 903, 1764}, 
{903, 946, 1849}, {946, 990, 1936}}
9/17 {{8, 9, 17}, {9, 9, 18}}
8/15 {{2, 4, 6}, {4, 6, 10}, {7, 8, 15}, {8, 8, 16}}
7/13 {{6, 7, 13}, {7, 7, 14}}
6/11 {{5, 6, 11}, {6, 6, 12}}
5/9 {{4, 5, 9}, {5, 5, 10}}
4/7 {{3, 4, 7}, {4, 4, 8}}
3/5 {{2, 3, 5}, {3, 3, 6}}
2/3 {{1, 2, 3}, {2, 2, 4}}
1/1 [[1, 1, 2]]

Observations

It is notable that the list has many more ratios less than 1 /2 than greater than 1 /2.  Many of the ratios 
less than 1 /2 have only one solution listed, but it is shown in Section 12.2 that all of them have more 
solutions (infinitely many in fact, since all have  nonsquare D), but those lie beyond the limit of 
x, y < 1000 used in the search.  Of the ratios where more than one solution appears, it is notable that 
very often the y value of one solution is the same as the x value of the next.  The case p /q ⩵ 1 /2 shows 
this pattern continuously for all solutions, which makes sense since we saw that the solutions are pairs 
of successive triangular numbers.  For many other ratios, however, each sequence of solutions related 
in this way has at most 3 members.

For ratios between 0 and 1 /2, the number of solutions listed for each ratio tends to increase the closer 
the ratio is to 1 /2.  Since each ratio in this range actually has an infinite number of solutions, this trend 
is simply the result of the fact that more of them are within the range of the search.  Thus the solutions 
for a given ratio tend to increase in size more slowly, for the ratios closer to 1 /2.

Some other observations: if p ⩵ 1 then the total number of balls in the smallest solution is 2 q, while if 
p ⩵ 2 the total is q.  In both cases x ⩵ 1.  For ratios greater than 1 /2, all the ratios in these results have a 
solution in which x ⩵ y ⩵ p, along with another in which x ⩵ p - 1, y ⩵ p.  We shall see that this only 
holds for ratios of the form p / (2 p - 1), which is the case for all of these.
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Some other observations: if p ⩵ 1 then the total number of balls in the smallest solution is 2 q, while if 
p ⩵ 2 the total is q.  In both cases x ⩵ 1.  For ratios greater than 1 /2, all the ratios in these results have a 
solution in which x ⩵ y ⩵ p, along with another in which x ⩵ p - 1, y ⩵ p.  We shall see that this only 
holds for ratios of the form p / (2 p - 1), which is the case for all of these.

In later sections of this notebook, we will find the explanations for these observations.

The “recycling” recurrence5.4  
One pattern I noticed in the reverse search results was that for many p /q ratios, there were series of 
solutions (x, y) in which the larger value (y) in one solution became the smaller value (x) in another, 
larger solution.  For some ratios these series continued indefinitely up to the limit of the search; but for 
many ratios there were only a few members of any such series, typically three although sometimes only 
two.  (I have found none with four or more admissible solutions in a series that did not continue indefi-
nitely.)  With this hint, we can solve for a formula that, given one (x, y) pair, generates another (y, z) 
pair with x ≠ z, having the same p /q value.

In[116]:= Solve[{probdifferent[{x, y}] ⩵ probdifferent[{y, z}], x ≠ z}, z]

Out[116]= z →
(-1 + y) y

x


The formula preserves the probability ratio p /q, although it is not guaranteed to yield integer values.  
Since the sequence re-uses a number from one solution in the next, I call this the "recycling recurrence" 
to distinguish it from another recurrence that will be discussed in a later section.

In order for this formula to yield increasingly large solutions, i.e. to go from (x, y) with x < y to a larger 
solution (y, z) with y < z, we need to have

z ⩵
y (y - 1)

x
> y

which requires y - 1 > x, i.e. y > x + 1.

The trivial solutions are problematic for the recycling recurrence.  Only one of them even gives a 
defined result: (1, 0) → (0, 0) but (0, 0) or (0, 1) yields z ⩵ 0 /0. 

Define a function to calculate the recycling recurrence neighbor to (x, y).

In[117]:= recycle[{x_, y_}] := y,
y (y - 1)

x


If x < y this yields the next larger member of the series (except for some special cases discussed below).  
If x ≥ y then it runs in reverse, yielding the previous smaller member of the series.

Examples5.4.1 

The Varsity Math case follows this recurrence.
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In[118]:= TableForm[RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],
x[1] ⩵ 1, y[1] ⩵ 3},

{x[i], y[i]}, {i, 9}]]
Out[118]//TableForm=

1 3
3 6
6 10
10 15
15 21
21 28
28 36
36 45
45 55

  Here is another example in which the recurrence yields integer values indefinitely:

In[119]:= xypairs = RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],
x[1] ⩵ 1, y[1] ⩵ 6},

{x[i], y[i]}, {i, 10}];

In[120]:= TableForm[xypairs]
Out[120]//TableForm=

1 6
6 30
30 145
145 696
696 3336
3336 15985
15985 76590
76590 366966
366966 1758241
1 758241 8424240

Verify that these all have the same probability of different colors.

In[121]:= DeleteDuplicates[probdifferent /@ xypairs]

Out[121]= 
2

7


Here is an example where the recurrence yields just 3 integer pairs before producing inadmissible 
values.

In[122]:= probdifferent[{2, 5}]

Out[122]=
10

21
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In[123]:= TableForm[RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],
x[1] ⩵ 2, y[1] ⩵ 5},

{x[i], y[i]}, {i, 4}]]
Out[123]//TableForm=

2 5
5 10
10 18

18 153
5

Running it in reverse also gives a fractional value for the preceding pair.

In[124]:= recycle[{5, 2}]

Out[124]= 2,
2

5


So the related solutions form a triplet.  We shall see there is a reason why many solutions occur in 
triplets.  However, I don’t know why there are never more than three admissible solutions in a 
sequence except when the recurrence continues infinitely.

Elliptical case5.4.2 

The recycling recurrence has to stop progressing to larger values for the elliptical case, since the ellipse 
has a finite range.  In Section 5.2.1 we showed that for ratios of the form p / (2 p - 1) there are solutions  
(p - 1, p), (p, p), and (p, p - 1) which form a recycling triplet.  They do not continually advance to larger 
values, and indeed, these fail to satisfy the requirement y > x - 1.  Here is what happens for the ratio 
p /q = 4 /7:

In[125]:= TableForm[
RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],

x[1] ⩵ 4, y[1] ⩵ 5},
{x[i], y[i]}, {i, 4}]]

Out[125]//TableForm=

4 5
5 5
5 4

4 12
5

In general, the recycling recurrence around the vertex of the ellipse runs as follows:

(x - 1, x) → (x, x) → (x, x - 1)

Running the recurrence further may or may not yield an integer.  Here is an example where it does yield 
integers (which are trivial solutions) for a couple more steps:
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In[126]:= RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],
x[1] ⩵ 1, y[1] ⩵ 2},

{x[i], y[i]}, {i, 5}]

Out[126]= {{1, 2}, {2, 2}, {2, 1}, {1, 0}, {0, 0}}

In[127]:= probdifferent[{2, 2}]

Out[127]=
2

3

When removing one ball does not change the odds5.4.3 

An interesting observation is that if x ⩵ y, the recycling recurrence gives as the next value (x, x - 1).

In[128]:= recycle[x, x]

Out[128]= recycle[x, x]

That is, assuming x ≥ 2 so that the result is admissible, the probability ratio p /q for (x, x) is the same as 
for (x - 1, x) and (x, x - 1).  In words: if the bag initially contains equal numbers of red and blue balls, 
removing one ball does not change the odds that the next two balls drawn will be different colors.  
That’s pretty neat.  For example:

In[129]:= probdifferent[{8, 8}]

Out[129]=
8

15

In[130]:= probdifferent[{7, 8}]

Out[130]=
8

15

Function to generate recycling series5.4.4 

The recycling recurrence gives us a way, once one solution to (2) has been found for a given p /q, to 
generate other solutions.  It is not guaranteed to yield integer solutions, however.  As discussed above, 
usually these series are limited to at most three solutions.

Let us define a function to find neighbors to a given solution via the recycling recurrence.

Argument xylist is a list of {x, y} pairs whose recycling neighbors are to be found.  The function 
returns the original list plus any companions up to two steps away.  Only non-negative integer solu-
tions are returned.  (The trivial solutions may be returned.)  Optional argument tableform is True to 
select tabular output (default) or False to return in list form (useful when feeding result to another 
function).
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In[131]:= recycleSolutions[xylist_, tableform_: True] :=
Module[{xyfwd1, xyfwd2, xyrev1, xyrev2, xyall, xlist, ylist},
xyfwd1 = Table[If[x ≠ 0, {y, y (y - 1) / x}, {-9, -9}] /.

{x -> xylist[[i]][[1]], y → xylist[[i]][[2]]}
, {i, Length[xylist]}];

xyrev1 = Table[If[y ≠ 0, {x (x - 1) / y, x}, {-9, -9}] /.
{x -> xylist[[i]][[1]], y → xylist[[i]][[2]]}

, {i, Length[xylist]}];
xyfwd2 = Table[If[x ≠ 0, {y, y (y - 1) / x}, {-9, -9}] /.

{x -> xyfwd1[[i]][[1]], y → xyfwd1[[i]][[2]]}
, {i, Length[xyfwd1]}];

xyrev2 = Table[If[y ≠ 0, {x (x - 1) / y, x}, {-9, -9}] /.
{x -> xyrev1[[i]][[1]], y → xyrev1[[i]][[2]]}

, {i, Length[xylist]}];
xyall = DeleteDuplicates[Join[xylist, xyfwd1, xyrev1, xyfwd2, xyrev2]];
xlist = Table[xyall[[i]][[1]], {i, Length[xyall]}];
ylist = Table[xyall[[i]][[2]], {i, Length[xyall]}];
ylist = Extract[ylist, Position[xlist, _Integer?NonNegative]];
xlist = Extract[xlist, Position[xlist, _Integer?NonNegative]];
xlist = Extract[xlist, Position[ylist, _Integer?NonNegative]];
ylist = Extract[ylist, Position[ylist, _Integer?NonNegative]];
If[tableform,
TableForm[
Sort[Table[{xlist[[i]], ylist[[i]]}, {i, Length[xlist]}]]
, TableHeadings → {None, {"x", "y"}}]

, Sort[Table[{xlist[[i]], ylist[[i]]}, {i, Length[xlist]}]]
]

]

Exercise it on a couple of examples.

A hyperbolic case with only three integer solutions in a series.

In[132]:= recycleSolutions[{{5, 10}}]
Out[132]//TableForm=

x y
2 5
5 10
10 18

The Varsity Math case:

In[133]:= recycleSolutions[{{6, 10}}, False]

Out[133]= {{1, 3}, {3, 6}, {6, 10}, {10, 15}, {15, 21}}

An elliptical case that hits all integers in its range, including the trivial solutions.
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In[134]:= recycleSolutions[{{1, 2}, {2, 2}}, False]

Out[134]= {{0, 0}, {0, 1}, {1, 0}, {1, 2}, {2, 1}, {2, 2}}

Special cases6 
There are a few special cases that can be solved with simple algebra.

Special case: p /q ⩵ 06.1  
If p /q ⩵ 0, it means that the probability of drawing balls of different colors is zero.  This is obviously the 
case if and only if all the balls are the same color.  So there are two infinite families of admissible 
solutions:

x ⩵ 0, yϵℤ, y ≥ 2
y ⩵ 0, xϵℤ, x ≥ 2

Solving Equation (2) formally for this case, set p ⩵ 0.  In lowest terms, q ⩵ 1.  The equation reduces to

In[135]:= Simplify[xyeqn[{x, y}] /. {p → 0, q → 1}]

Out[135]= x y ⩵ 0

Clearly this requires either x ⩵ 0 or y ⩵ 0.  Requiring admissibility yields the above solutions.

In[136]:= Reduce[{xyeqn[{x, y}] /. {p → 0, q → 1}, x ≥ 0, y ≥ 0, x + y ≥ 2}]

Out[136]= (x ≥ 2 && y ⩵ 0) || (y ≥ 2 && x ⩵ 0)

Special case: p /q ⩵ 16.2  
If p /q ⩵ 1, it means the likelihood of drawing balls of different colors is certainty.  Obviously there is 
just one admissible solution, in which the bag contains two balls of different colors:

x ⩵ 1, y ⩵ 1

Solving Equation (2) formally for this case, set p ⩵ 1, q ⩵ 1.  The equation becomes

In[137]:= Simplify[xyeqn[{x, y}] /. {p → 1, q → 1}]

Out[137]= x2 + y2 ⩵ x + y

x2 + y2 - x - y ⩵ 0
x (x - 1) ⩵ -y (y - 1)

Since we require x ≥ 0 and y ≥ 0, there will be an irresolvable sign conflict unless x(x - 1) ⩵ y(y - 1) ⩵ 0.  
The solutions (0, 0), (0, 1), and (1, 0) are not admissible, leaving only (1, 1).  Mathematica agrees:

In[138]:= Reduce[{xyeqn[{x, y}] /. {p → 1, q → 1}, x ≥ 0, y ≥ 0, x + y ≥ 2}]

Out[138]= y ⩵ 1 && x ⩵ 1
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Special case: p ⩵ 1 or 26.3  
Suppose p ⩵ 1.  Then the probability of drawing different colors is

In[139]:= probequation[{x, y}] /. p → 1

Out[139]=
2 x y

(-1 + x + y) (x + y)
⩵

1

q

If p ⩵ 2, it is

In[140]:= probequation[{x, y}] /. p → 2

Out[140]=
2 x y

(-1 + x + y) (x + y)
⩵

2

q

These can be unified by writing

(x + y) (x + y - 1) ⩵ a x y (14)

where a ⩵ 2 q if p ⩵ 1, and a ⩵ q if p ⩵ 2.  Since a > 1 this equation always has an admissible solution 
with x ⩵ 1:

In[141]:= Solve[(x + y) (x + y - 1) ⩵ a x y /. x → 1, y]

Out[141]= {{y → 0}, {y → -1 + a}}

In[142]:= {{y → 0}, {y → -1 + a}}

Out[142]= {{y → 0}, {y → -1 + a}}

So there is always the solution
(1, 2 q - 1), p ⩵ 1
(1, q - 1), p ⩵ 2

The recycling recurrence will generate additional solutions.  We can show that it will always yield 
integer values.  This requires that x divide y(y - 1).  From Equation (14), and the fact that a is an integer, 
x must divide (x + y) (x + y - 1).  Using the fact that a divides b c if and only if it divides (b + a) (c + a), we 
have the result that x divides y(y - 1) and so y(y - 1) / x is always integer.  However, this does not imply 
that the recycling recurrence will yield an infinite number of solutions.  For a ⩵ 2 or 3, y ⩵ a - 1 is 1 or 2, 
violating the requirement we saw earlier that y > x + 1 for the recurrence to advance to larger values.  
These are elliptical cases: a ⩵ 2 corresponds to p /q = 1 /1, while a ⩵ 3 corresponds to p /q ⩵ 2 /3.  For 
a ⩵ 4, p /q ⩵ 1 /2, and for a > 4, p /q < 1 /2.  For those cases, which are in the parabolic and the hyper-
bolic regime respectively, the sequence of solutions is infinite.

Here is an example, for p /q ⩵ 2 /7, a ⩵ 7.
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In[143]:= TableForm[RecurrenceTable[{{x[i + 1], y[i + 1]} ⩵ recycle[{x[i], y[i]}],
x[1] ⩵ 1, y[1] ⩵ 6},

{x[i], y[i]}, {i, 5}], TableHeadings → {None, {"x", "y"}}]
Out[143]//TableForm=

x y
1 6
6 30
30 145
145 696
696 3336

Comment

We have not shown that there are no other solutions besides those generated by the recycling recur-
rence from the initial solution.  That is in fact the case, as is proved in Section 12.4.

Parabolic case: p /q ⩵ 1 /27 
The parabolic case p /q ⩵ 1 /2 is the Varsity Math problem.  We have already solved it in Section 2.  The 
number of solutions is infinite.  If we impose uniqueness by requiring x ≤ y, every solution is of the form

x ⩵
v (v - 1)

2
, y ⩵

v (v + 1)

2
, t ⩵ v2, v ⩵ 2, 3, ...

i.e. pairs of successive triangular numbers making the total number of balls a square.

In terms of the derivation in Section 4.2.5, we need to use Equation (6), the equation in t and v, not (8), 
the equation in u and v, because the transformation to u, v breaks down when q ⩵ 2 p.  Recall Equation 
(6)  is

In[144]:= tveqn[{t, v}]

Out[144]= 2 p t + (-2 p + q) t2 - q v2 ⩵ 0

Here this reduces to

In[145]:= Simplify[tveqn[{t, v}] /. {p → 1, q → 2}]

Out[145]= t ⩵ v2

as found before.

Elliptical case: p /q > 1 /28 

Method of bracketed direct search8.1  
I have not come across a method for solving the elliptical case other than direct search, i.e. trying all 
viable possibilities.  This is feasible in principle since the number of possible solutions is finite, although 
it may become expensive for values of p /q close to 1 /2.
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I have not come across a method for solving the elliptical case other than direct search, i.e. trying all 
viable possibilities.  This is feasible in principle since the number of possible solutions is finite, although 
it may become expensive for values of p /q close to 1 /2.

The search can be confined to the limits of the minimum and maximum values of x reached by the 
ellipse, testing the integral values of x to see if they yield integral values of y in Equation (2).  Alterna-
tively, one can search within the range of v and u values in Equation (8).  This turns out to be a much 
better way to go.  We can rewrite Equation (8) in terms of z ⩵ p /q as

In[146]:= Simplify[uveqn[{u, v}] /. {p → z, q → 1}]

Out[146]= u2 + v2 (-1 + 2 z) ⩵ z2

For z > 1 /2 the coefficient of v is positive.  The maximum value of v occurs when u ⩵ 0:

In[147]:= maxvsolns = Solve[uveqn[{0, v}] /. {p → z, q → 1}, v]

Out[147]= v → -
z

-1 + 2 z
, v →

z

-1 + 2 z


Since changing the sign of v simply reverses the order of x, y in any solution, we can restrict to v ≥ 0.

In[148]:= maxv[z_] := Evaluate[Part[maxvsolns, 2, 1, 2]]

In[149]:= maxv[z]

Out[149]=
z

-1 + 2 z

For z ⩵ 1,

In[150]:= maxv[1]

Out[150]= 1

Let's examine this bound, to see how it grows as the probability ratio approaches 1 /2 from above.  Let ϵ 
be the amount by which the ratio differs from 1 /2.

In[151]:= Simplifymaxv[z] /. z →
1

2
+ ϵ

Out[151]=
1 + 2 ϵ

2 2 ϵ

As ϵ → 0, the 2 ϵ in the numerator can be neglected and the bound becomes approximately

=v> ≤
1

2 2 ϵ

which grows only as ϵ-1/2.  For instance, if ϵ ⩵ 10-6, the maximum value of v is only 353.

In[152]:= Floormaxv
1

2
+ 10-6

Out[152]= 353

For  ϵ ⩵ 10-12, a factor of a million smaller, the maximum value of v is only about a factor of a thousand 
larger, still not beyond reach of a search by computer in a reasonable time.
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For  ϵ ⩵ 10-12, a factor of a million smaller, the maximum value of v is only about a factor of a thousand 
larger, still not beyond reach of a search by computer in a reasonable time.

In[153]:= Floormaxv
1

2
+ 10-12

Out[153]= 353553

Comparison to direct search in (x, y)-space

The direct search in (x, y)-space, using Equation (2), is much less favorable.  Solve for the endpoint as a 
function of probability ratio z.  (The maximum x reached by the ellipse is slightly larger, but that does 
not matter for our purposes here.)

In[154]:= Solve[probdifferent[{x, x}] ⩵ z, x]

Out[154]= x →
z

-1 + 2 z


Now determine the asymptotic behavior as z approaches 1 /2.

In[155]:= Simplify
z

2 z - 1
/. z →

1

2
+ ϵ

Out[155]=
1

4
2 +

1

ϵ

For small values of ϵ, the endpoint is asymptotically

x ⩵
1

4 ϵ

For ϵ ⩵ 10-6, this is 250 000, 700 times larger than the maximum v.  Looking at the graphs of the ellipse 
in (x, y)-space vs. (u, v)-space, it is clear why: the former is tilted to have its axis along x ⩵ y, so one 
needs to search along its whole length, whereas for u, v it is aligned with the axes and is much narrower 
in the v-direction than in the u-direction.  This is shown with plots in the next section.

Plotting the elliptical case vs. z8.1.1 

Here we plot a family of ellipses as the p /q ratio varies.  Use ratios of the form p / (2 p - 1) from 1 /1 to 
5 /9.
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In[156]:= yvaluesforplot = Table[{y /. Solve[xyeqn[{x, y}] /. q → 2 p - 1, y]}, {p, 5}];
Plot[yvaluesforplot,
{x, -1 / 2, 11 / 2},
PlotRange → {{-1 / 2, 11 / 2}, {-1 / 2, 11 / 2}}, AspectRatio → 1,
PlotLegends → Table[p / (2 p - 1), {p, 5}], AxesLabel → {"x", "y"}]

Out[157]=

1 2 3 4 5
x

1

2

3

4

5

y

1
2
3

3
5

4
7

5
9

For p /q ⩵ 1, the ellipse is a circle.  As p /q decreases toward 1 /2, the ellipses elongate, approaching the 
parabola at p /q ⩵ 1 /2.

Here is the same set of cases plotted in (u, v)-space.  From Equation (8), the maximum value of u is p, 
while the maximum value of v is p

q(2 p-q)
.
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In[158]:= uvaluesforplot = Table[u /. Solve[uveqn[{u, v}] /. q → 2 p - 1, u], {p, 5}];
Plot[uvaluesforplot,
{v, -2, 2},
PlotRange → {{-11 / 2, 11 / 2}, {-11 / 2, 11 / 2}}, AspectRatio → 1,
PlotLegends → Table[p / (2 p - 1), {p, 5}], AxesLabel → {"v", "u"}]

Out[159]=

-4 -2 2 4
v

-4

-2

2

4

u

1
2
3

3
5

4
7

5
9

One can see that v grows more slowly than u.

Function to solve elliptic case by bracketed search8.2  
Let us put the bracketed search method into a function.  Argument z ⩵ p /q.  Optional argument table-
form is True to format results in a table (default), False to produce a list.  Include an If to proceed 
only for ratios in the elliptical range.  It’s written independent of any local function definitions so it can 
be copied into another notebook and still work.

Outline of the function:

◼ Compute range of v to search, using formula found above: 0 ≤ v ≤ vmax.

◼ Compute positive u values corresponding to each integer value of v in range.

◼ Sift out integer values of u and pair with corresponding v values.  Note that v values are offset from 
Position values by 1 since v starts at 0 while Position starts at 1.  Augment list with -u values 
since they are also solutions and give distinct (x, y).

◼ Convert (u, v) solutions to (t, v).
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◼ Convert (t, v) solutions to (x, y).

◼ Sift out positive integer values of x and y to yield only admissible solutions.  (The trivial solutions are 
not output.)

In[160]:= solveEllipticalBySearch[z_, tableform_: True] := Module

{p, q, maxv, ufromv, uvaluesall, hits,
uvalues, vvalues, tvalues, xvalues, yvalues, xyvalues},

p = Numerator[z];
q = Denominator[z];

If1 / 2 < z ≤ 1, (* make sure this is an elliptical case *)

maxv = Floor
z

2 z - 1
;

ufromv = p2 - q (2 p - q) v2 ;

uvaluesall = Table[ufromv, {v, 0, maxv}];
hits = Position[uvaluesall, _Integer, {1}];
uvalues = Join[Extract[uvaluesall, hits], -Extract[uvaluesall, hits]];
vvalues = Flatten[Join[hits - 1, hits - 1]];
tvalues = (u - p) / (q - 2 p) /. u → uvalues;
xvalues =

Table[(t - v) / 2 /. {t → tvalues[[i]], v → vvalues[[i]]}, {i, Length[vvalues]}];
yvalues = Table[(t + v) / 2 /. {t → tvalues[[i]], v → vvalues[[i]]},

{i, Length[vvalues]}];
(* extract the admissible solutions *)

yvalues = Extract[yvalues, Position[xvalues, _Integer?Positive, {1}]];
xvalues = Extract[xvalues, Position[xvalues, _Integer?Positive, {1}]];
xyvalues = Sort[Table[{xvalues[[i]], yvalues[[i]]}, {i, Length[xvalues]}]];
If[tableform,
TableForm[xyvalues, TableHeadings → {None, {x, y}}]
, (* else *)

xyvalues]

, (* Else *) Print["argument out of range"]



Examples8.2.1 

Exercise it on some examples.

In[161]:= solveEllipticalBySearch[1]
Out[161]//TableForm=

x y
1 1

Here is a ratio of form p / (2 p - 1) and hence has vertex solutions (see Section 5.2.1).  It also has other 
solutions.
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Here is a ratio of form p / (2 p - 1) and hence has vertex solutions (see Section 5.2.1).  It also has other 
solutions.

In[162]:= solveEllipticalBySearch[200 / 399]
Out[162]//TableForm=

x y
25 32
90 100
100 110
168 175
199 200
200 200

In[163]:= solveEllipticalBySearch[3 / 5, False]

Out[163]= {{2, 3}, {3, 3}}

Here is one that has no admissible solution.

In[164]:= solveEllipticalBySearch[4 / 5]
Out[164]//TableForm=

{}

This ratio is not elliptical.

In[165]:= solveEllipticalBySearch[1 / 9]

argument out of range

Example of a very elongated ellipse8.2.2 

Seeking a challenge, I thought it would be interesting to see how the bracketed search method fares on 
an elliptical case for which the ellipse is very large.

Among the results of the reverse search, which found p /q ratios for all pairs of numbers x, y < 1000, I 
found the ratio closest to and larger than 1 /2.  It has a solution (x, y) == (947, 991).  It may have larger 
solutions not found by the search.  Here is the p /q ratio:

In[166]:= zelongated = probdifferent[{947, 991}]

Out[166]=
938 477

1 876953

Here it is numerically.

In[167]:= zelongated // N

Out[167]= 0.5

We know it is not exactly 1 /2 so let’s see by how much it differs

In[168]:= N[zelongated, 10]

Out[168]= 0.5000002664

Here is the difference.
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In[169]:= zelongated -
1

2
// N

Out[169]= 2.66389 × 10-7

Check to see whether this ratio is in the form q ⩵ 2 p - 1 to have an endpoint solution.

In[170]:= (2 p - q) /. {p → Numerator[zelongated], q → Denominator[zelongated]}

Out[170]= 1

So it is indeed by happy chance in the required form.  (Actually, Section 8.5.3 shows it is not by chance.)  
There will be a solution (x, x) with x ⩵ p ⩵ 938 477 and companion solutions (x - 1, x) and (x, x - 1).  
Given the solution found by the reverse search, by symmetry we know there will also be solutions 
diametrically opposite to it:

In[171]:= {Numerator[zelongated] - 991, Numerator[zelongated] - 947}

Out[171]= {937486, 937530}

There will also of course be the counterparts obtained by swapping x and y.

However, we don't know if there are any more solutions besides these, since the reverse search was not 
exhaustive for this ratio.  There could be other solutions somewhere above 1000.  Let’s assess how 
much searching will be needed.

In[172]:= Floor[maxv[zelongated]]

Out[172]= 685

That is not bad at all.  Here we go, using our spiffy new function.  Let’s time it.

In[173]:= Timing[solveEllipticalBySearch[zelongated]]

Out[173]= 0.064212,

x y
947 991
937486 937 530
938476 938 477
938477 938 477



Far less than a second to find the solutions on my laptop, so this is not a challenging case after all.  
Clearly ratios much closer to 1 /2 could be solved.  Disappointingly, the search did not turn up any 
solutions that we had not already predicted based on the form of p /q and the one solution found by 
the reverse search.

Exhaustive enumeration of solutions8.3  
For elliptical cases where the maximum x is not very large, there can only be a few solutions at most.  
The ellipse grows smaller as p /q grows from 1 /2 toward 1.   Thus for p /q values above a certain value, 
the solutions will be for x and y within a very limited range.  Only a limited number of p /q values can 
result.  This allows all possible probability ratios above that chosen value having solutions to be enumer-
ated, and all other ratios in that range have no solution.  Let us choose a maximum x and y of 5 as a 
very manageable value. The value of z above which the endpoint x ≤ 5 (so that floor(x) ≤ 5) is given by
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For elliptical cases where the maximum x is not very large, there can only be a few solutions at most.  
The ellipse grows smaller as p /q grows from 1 /2 toward 1.   Thus for p /q values above a certain value, 
the solutions will be for x and y within a very limited range.  Only a limited number of p /q values can 
result.  This allows all possible probability ratios above that chosen value having solutions to be enumer-
ated, and all other ratios in that range have no solution.  Let us choose a maximum x and y of 5 as a 
very manageable value. The value of z above which the endpoint x ≤ 5 (so that floor(x) ≤ 5) is given by

In[174]:= zrangeforxle5 = Reduce
z

2 z - 1
≤ 5 &&

1

2
< z ≤ 1, z

Out[174]=
5

9
≤ z ≤ 1

In[175]:= minzforxle5 = zrangeforxle5[[1]]

Out[175]=
5

9

Here is the lower limit numerically.

In[176]:= minzforxle5 // N

Out[176]= 0.555556

So all solutions for ratios 5
9
≤ p

q
≤ 1 must have x, y ≤ 5.  Here is the table of ratios in this range that have 

solutions.  For uniqueness we impose x ≤ y.   (Mathematica note: since the table is triangular, grouping 
is needed to arrange it in the right format.)

In[177]:= TableForm[Table[{{x, y, probdifferent[{x, y}]}}, {y, 1, 5}, {x, 1, y}]]
Out[177]//TableForm=

1 1 1

1 2 2
3

2 2 2
3

1 3 1
2

2 3 3
5

3 3 3
5

1 4 2
5

2 4 8
15

3 4 4
7

4 4 4
7

1 5 1
3

2 5 10
21

3 5 15
28

4 5 5
9

5 5 5
9

Some ratios in the table are smaller than the z threshold, and some are outside of the elliptical range 
(having z ≤ 1 /2).  Let’s arrange them in ascending order.

In[178]:= DeleteDuplicates[Sort[Flatten[Table[probdifferent[{x, y}], {x, 1, 5}, {y, 1, x}]]]]

Out[178]= 
1

3
,
2

5
,
10

21
,
1

2
,

8

15
,
15

28
,
5

9
,
4

7
,
3

5
,
2

3
, 1

Only five ratios, namely 5
9

, 4
7

,  3
5

, 2
3

, and 1, are in the range greater than or equal to the threshold.  All 

other probability ratios in that range have no solutions.  The solutions in the table are the only ones for 
these five ratios.  Note that all of them correspond to solutions of the form (x, x) and, except for p

q
⩵ 1, 

also (x - 1, x) and (suppressed in the table) (x, x - 1).  So there are 3 solutions each for x ⩵ 2, 3, 4, 5 
plus 1 solution for x ⩵ 1, a total of 13 solutions in this range of p /q values.

This range represents nearly half (more exactly, about 45%) of all admissible p /q ratios.

In[179]:= (1 - minzforxle5) // N

Out[179]= 0.444444
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Refining the bound8.3.1 

The ratio 5 /9 is a conservative bound on the ratios that can have solutions with x, y ≤ 5.  One can 
actually use the smaller ratio for the far endpoint (6, 6) as a bound, as a strict inequality.  In general, 
suppose we wish to define a bound on p /q such that solutions will be x, y ≤ xmax for some chosen xmax.  
The probability ratio giving an endpoint at (x, x) (not necessarily integer) is

In[180]:= Solve
z

2 z - 1
⩵ x, z

Out[180]= z →
x

-1 + 2 x


It may seem that there could be a solution with a larger x on this ellipse, in the short arc between (x, x) 
and (x, x - 1).  Here is a plot showing the case where the vertex is at (5.9, 5.9).

In[181]:= probdifferent[{59 / 10, 59 / 10}]

Out[181]=
59

108

In[182]:= yvaluesforplot = Solve[xyeqn[{x, y}] /. {p → 59, q → 108}, y];
Plot[y /. yvaluesforplot, {x, 4.5, 6.5},
PlotRange → {{4.5, 6.5}, {4.5, 6.5}}, AspectRatio → 1,
GridLines → {{5.9, 6}, {5.9}},
AxesLabel → {"x", "y"}]

Out[183]=

One can see that x values larger than the vertex value of 5.9 (left gridline) appear in the arc segment at 
the right.   These include the integer value 6 (right gridline).

However, it turns out that no matter what the vertex coordinate is, this arc can never hit integer values 
for both x and y.  A formal proof is in Section 12.1.  The reason is basically that it is too close to the line 
x ⩵ y and hence there is no room for x - y to be other than 0 or 1, which correspond to  (x, x) and 
(x, x - 1) themselves, contradicting the hypothesis that the solution is strictly between these points.  
Hence we can use xmax + 1 as the vertex value in calculating the lower bound on z for x ≤ xmax.
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However, it turns out that no matter what the vertex coordinate is, this arc can never hit integer values 
for both x and y.  A formal proof is in Section 12.1.  The reason is basically that it is too close to the line 
x ⩵ y and hence there is no room for x - y to be other than 0 or 1, which correspond to  (x, x) and 
(x, x - 1) themselves, contradicting the hypothesis that the solution is strictly between these points.  
Hence we can use xmax + 1 as the vertex value in calculating the lower bound on z for x ≤ xmax.

For the case x, y ≤ 5 therefore we take probability ratio for the endpoint (6, 6).

In[184]:=
x

2 x - 1
/. x → 6

Out[184]=
6

11

Hence we can say that any ratio z > 6 /11 cannot have solutions with  x, y > 5.

In[185]:= 6 / 11 // N

Out[185]= 0.545455

Revisiting the exhaustive search on x, y ≤ 5, we can see where this new bound fits in the sequence of 
ratios that have solutions.

In[186]:= DeleteDuplicates[
Sort[Flatten[Join[Table[probdifferent[{x, y}], {x, 1, 5}, {y, 1, x}], {6 / 11}]]]]

Out[186]= 
1

3
,
2

5
,
10

21
,
1

2
,

8

15
,
15

28
,

6

11
,
5

9
,
4

7
,
3

5
,
2

3
, 1

It is adjacent to the old bound of 5 /9.  The list of ratios having solutions in this range does not change, 
but additional ratios between the new bound and the old bound are now excluded.

Enumeration of elliptical solutions with x, y < 9998.3.2 

The reverse search described in Section 5.3 amounts to doing an exhaustive enumeration for values of 
x, y < 1000.  Thus for ratios above a certain threshold it enumerates all solutions that exist.  Here is the 
probability value corresponding to an endpoint of 1000:

In[187]:= minzforapex1000 = probdifferent[{1000, 1000}]

Out[187]=
1000

1999

Here it is numerically.

In[188]:= minzforapex1000 // N

Out[188]= 0.50025

The probability ratio for an endpoint of 999 is:

44     odds-inversion.nb



In[189]:= minzforapex999 = probdifferent[{999, 999}]

Out[189]=
999

1997

This endpoint is within the range of the search, and the ratio 999 /1997 appears as ratio number 477 704 
of the output.  I searched above it for the smallest ratio greater than the ratio 1000 /1999 for vertex 
1000.  This appears as ratio number 477 683.  The ratio is 115 993 /231 870.   It has one distinct solution, 
(579, 601).  The ratio for vertex 1000 itself does not appear in the reverse search results since it has no 
solutions other than the vertex solutions, which are beyond the range of the search.

The last line of output, for probability ratio 1 /1, is number 494 396.  Therefore the number of ratios 
greater than 1000 /1999 having solutions is:

In[190]:= 494396 - 477683 + 1

Out[190]= 16714

Placing bounds on p and q8.4  
This section is heavy going, and the result is not used in later sections, so it can be skipped unless you 
are interested in the details.

Not just any ratio in the elliptical regime is possible.  There are bounds on p and q that get smaller as 
the ratio approaches 1.  This is because they arise from the probability formula, so the bounds on x and 
y place bounds on p and q.

The result is

p ≤ 
z

2 z - 1

2

q ≤
z

(2 z - 1)2

where z ⩵ p /q.  The derivation of these formulas follows.

Start with the probability formula, Equation (1):
p

q
⩵

2 x y

(x + y) (x + y - 1)

If there is cancellation of common factors, then numerator and denominator may be smaller than 
these, but they cannot be larger.  The factor 2 always divides the denominator.  Thus we have

p ≤ x y
q ≤ (x + y) (x + y - 1) / 2

Now, a bound can be calculated using x ≤ xmax and y ≤ xmax where xmax is the rightmost x value.  How-
ever, this bound is loose since when x ⩵ xmax, then y < x.   In fact, the products on the RHS of the 
inequalities above are maximized at the vertex.  Proof: start with y as a function of x, calculated in the 
previous section, repeated here:
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In[191]:= yvsx = Solve[probdifferent[{x, y}] ⩵ z, y]

Out[191]= y →
2 x + z - 2 x z - 4 x2 + 4 x z - 8 x2 z + z2

2 z
, y →

2 x + z - 2 x z + 4 x2 + 4 x z - 8 x2 z + z2

2 z


Extract the positive branch to get y ≥ x.

In[192]:= Part[yvsx, 2, 1]

Out[192]= y →
2 x + z - 2 x z + 4 x2 + 4 x z - 8 x2 z + z2

2 z

Use this to get the product x y in terms of x alone.

In[193]:= xyvsx = Simplify[x y /. Part[yvsx, 2, 1]]

Out[193]=

x -2 x (-1 + z) + z + x2 (4 - 8 z) + 4 x z + z2

2 z

Find the extrema of this expression by solving for where the derivative is 0.  This is where Mathematica 
shines.

In[194]:= dxydxzeros = Solve[D[xyvsx, x] ⩵ 0, x]

Out[194]= {x → 0}, x →
z

-1 + 2 z
, x →

1

4
1 - 1 + 2 z , x →

1

4
1 + 1 + 2 z 

The first solution is the vertex at the origin, the second is the far vertex.  The third and fourth are near 
the origin.  Let’s explore graphically.  Here they are numerically for a p / (2 p - 1) instance where xe ⩵ 13.

In[195]:= % /. z → 13 / 25 // N

Out[195]= {{x → 0.}, {x → 13.}, {x → -0.107071}, {x → 0.607071}}

These are not at the extrema of x.  Find the extrema by setting the term inside the radical for y vs. x to 
0, so the positive and negative branches coincide.

In[196]:= Part[yvsx, 1, 1, 2, 3, 4, 2, 1]

Out[196]= 4 x2 + 4 x z - 8 x2 z + z2

In[197]:= xmaxvsz = Solve[Part[yvsx, 1, 1, 2, 3, 4, 2, 1] ⩵ 0, x]

Out[197]= x →
z - 2 z3/2

2 (-1 + 2 z)
, x →

z + 2 z3/2

2 (-1 + 2 z)


Plug in the example:

In[198]:= xmaxvsz /. z → 13 / 25 // N

Out[198]= {{x → -0.128725}, {x → 13.1287}}

Plot x y for this instance from end to end.

46     odds-inversion.nb



In[199]:= Plotxyvsx /. z →
13

25
, {x, -0.2, 13.2}

Out[199]=

2 4 6 8 10 12

50

100

150

Look more closely at x y near the vertex:

In[200]:= xyvsx /. {x → 13, z → 13 / 25}

Out[200]= 169

In[201]:= Plotxyvsx /. z →
13

25
, {x, 12, 13.2}, GridLines → {{13}, {169}}

Out[201]=

The vertex solution is indeed a maximum of x y.

Examine the first and third solutions.
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In[202]:= Plotxyvsx /. z →
13

25
, {x, -0.2, 0.1},

GridLines →


1

4
1 - 1 + 2 z  /. z → 13 / 25,  xyvsx /. x ->

1

4
1 - 1 + 2 z  /. z → 13 / 25

Out[202]=

In[203]:= Plotxyvsx /. z →
13

25
, {x, 0.55, 0.65},

GridLines → 
1

4
1 + 1 + 2 z  /. z → 13 / 25, None

Out[203]=

At the origin x y does not have slope 0, nor at the small positive solution near 0.61.  Evidently these are 
artifacts introduced when solving.  The true min is at the small negative value, and the true max is at 
the far vertex.

Verify that the slope is 0 at the second and third solutions by plugging the x values into the derivative.
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In[204]:= SimplifyD[xyvsx, x] /. dxydxzeros, Assumptions →
1

2
< z ≤ 1

Out[204]= 1, 0,
1

4 z 1 + z - 1 + 2 z

-2 2 z2 + 2 2 - 2 + 4 z + 1 + z - 1 + 2 z - (1 + 2 z) 1 + z - 1 + 2 z  +

z 2 + 2 + 4 z + 2 (1 + 2 z) 1 + z - 1 + 2 z  ,

1

4 z 1 + z + 1 + 2 z

-2 2 z2 + z 2 - 2 + 4 z - 2 (1 + 2 z) 1 + z + 1 + 2 z  +

2 2 + 2 + 4 z + 1 + z + 1 + 2 z + (1 + 2 z) 1 + z + 1 + 2 z  

Interestingly, Mathematica seems unable to simplify the third one to zero, even though it evidently is.

In[205]:= % /. z → 13 / 25 // N

Out[205]= {1., 0., 0., 3.24149}

Even using FullSimplify does not succeed.

In[206]:= FullSimplifyD[xyvsx, x] /. dxydxzeros, Assumptions →
1

2
< z ≤ 1

Out[206]= 1, 0,

1

4 z 1 + z - 1 + 2 z

2 2 - 2 + 4 z + 1 + z - 1 + 2 z - (1 + 2 z) 1 + z - 1 + 2 z  +

z 2 - 2 2 z + 2 + 4 z + 2 (1 + 2 z) 1 + z - 1 + 2 z  ,

1

4 z 1 + z + 1 + 2 z

z 2 - 2 2 z - 2 + 4 z - 2 (1 + 2 z) 1 + z + 1 + 2 z  +

2 2 + 2 + 4 z + 1 + z + 1 + 2 z + (1 + 2 z) 1 + z + 1 + 2 z  

However, this method succeeds:

In[207]:= TableSimplify(D[xyvsx, x] /. dxydxzeros)[[i]] ⩵ 0, Assumptions →
1

2
< z ≤ 1, {i, 4}

Out[207]= {False, True, True, False}

Anyway, this tells us that we can use x y ≤ xe
2 for the bound on p.  Now turn to the bound on q.
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In[208]:= xpyxpym1vsx = Simplify[(x + y) (x + y - 1) /. Part[yvsx, 2, 1]]

Out[208]=

x -2 x (-1 + z) + z + x2 (4 - 8 z) + 4 x z + z2

z2

In[209]:= Solve[D[xpyxpym1vsx, x] ⩵ 0, x]

Out[209]= {x → 0}, x →
z

-1 + 2 z
, x →

1

4
1 - 1 + 2 z , x →

1

4
1 + 1 + 2 z 

The same four points.

In[210]:= Table

Simplify(D[xpyxpym1vsx, x] /. dxydxzeros)[[i]] ⩵ 0, Assumptions →
1

2
< z ≤ 1, {i, 4}

Out[210]= {False, True, True, False}

So once again we can use the vertex values as the bound on q.  Thus we can set

x ⩵ y == xe ⩵
p

2 p - q
⩵

z

2 z - 1

in the expressions on the RHS of the inequalities for p and q.  Hence

p ≤ 
z

2 z - 1

2

q ≤
1

2

2 z

2 z - 1

2 z

2 z - 1
- 1 ⩵ 

z

2 z - 1


1

2 z - 1
⩵

z

(2 z - 1)2

In[211]:= pboundvsz[z_] :=
z2

(2 z - 1)2

In[212]:= qboundvsz[z_] :=
z

(2 z - 1)2

Let’s look at some values.
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In[213]:= TableForm[Table[{z, Floor[pboundvsz[z]], Floor[qboundvsz[z]]} /. z → i / 25,
{i, 13, 25}], TableHeadings → {None, {"z", "pmax", "qmax"}}]

Out[213]//TableForm=

z pmax qmax
13
25

169 325
14
25

21 38
3
5

9 15
16
25

5 8
17
25

3 5
18
25

2 3
19
25

2 2
4
5

1 2
21
25

1 1
22
25

1 1
23
25

1 1
24
25

1 1

1 1 1

The reverse search found a ratio with largish p ⩵ 99, q ⩵ 190 compared to its neighbors, with solution 
(x, y) ⩵ (9, 11).

In[214]:= Floor[{pboundvsz[z], qboundvsz[z]} /. z → 99 / 190]

Out[214]= {153, 293}

It is comfortably within the bounds.  Here is one with larger p, q, for (x, y) ⩵ (41, 43).

In[215]:= Floor[{pboundvsz[z], qboundvsz[z]} /. z → 1763 / 3486]

Out[215]= {1942, 3841}

This too is within the bounds.

We can rule out the following ratio, randomly chosen to be far from 1 /2 so the bounds are small:

In[216]:= Floor[{pboundvsz[z], qboundvsz[z]} /. z → 98058 / 176501]

Out[216]= {24, 44}

Vertex solutions8.5  
In Section 5.2.1 we showed that for ratios p /q where q ⩵ 2 p - 1, which are elliptical, there are always 
three admissible solutions at the far vertex of the ellipse, at (p, p), (p - 1, p), and (p, p - 1).

Here is a table of probability ratios giving elliptical vertex solutions for x ≤ 10.
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In[217]:= TableForm[Table[{x, probdifferent[{x, x}]}, {x, 10}],
TableHeadings → {None, {x, p / q}}]

Out[217]//TableForm=

x p
q

1 1

2 2
3

3 3
5

4 4
7

5 5
9

6 6
11

7 7
13

8 8
15

9 9
17

10 10
19

The existence of these solutions does not give any information about the possible existence of solu-
tions at other points than around the vertex.  For instance, 8 /15 has non-vertex solutions.

In[218]:= solveEllipticalBySearch[8 / 15]
Out[218]//TableForm=

x y
2 4
4 6
7 8
8 8

Symmetry when vertex solutions exist8.5.1 

Consideration of the symmetry of the ellipse leads to another conclusion.  If the far vertex coordinate 
xmax ⩵ ymaxis an integer, then if there is a solution somewhere other than at the endpoint, there will be 
a companion solution at a point that is symmetrical about the center of the ellipse.  I.e., if (x, y) is a 
solution, then

(xmax - x, ymax - y)

 is diametrically opposite and is a solution.  The example 8 /15 shows this: the vertex is at (8, 8), and 
there are symmetrical solutions (2, 4) and (6, 4).

For other probability ratios that do not give integer vertex solutions, there may still be solutions in 
other parts of the ellipse, but they will not occur in symmetric pairs like these.  An example is 15 /28, for 
which there is one distinct solution (3, 5).  The vertex is at
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In[219]:=
p

2 p - q
/. {p → 15, q → 28}

Out[219]=
15

2

Midsection solutions8.5.2 

While perusing the results of the reverse search, I noticed that there were a number of elliptical cases 
having vertex solutions in which another solution existed with x or y ⩵ p /2.  Investigating, I found these 
corresponded to u2 ⩵ v2 in Equation (8).  We can determine the conditions for this to occur:

In[220]:= uveqn[{u, u}]

Out[220]= u2 - q (-2 p + q) u2 ⩵ p2

or

u2 ⩵
p2

1 - q (q - 2 p)

In order for this solution to be admissible, the denominator must be a square.  (It is always negative in 
the hyperbolic case, so this situation can only occur for the elliptical case.)  If the probability ratio has 
vertex solutions, i.e. q ⩵ 2 p - 1, then

u2 ⩵
p2

1 + (2 p - 1)
⩵

p

2

which requires p /2 to be square.  Set p ⩵ 2 k2, giving

u2 ⩵ v2 ⩵ k2

i.e. u ⩵±k, v ⩵±k (for any combination of signs).  As usual we limit ourselves to v ≥ 0 to yield x ≤ y for 
distinctness.  Then converting to x, y we obtain for u ⩵ k:

In[221]:= Simplifyxyfromuv[{k, k}] /. p → 2 k2, q → 4 k2 - 1

Out[221]= (-1 + k) k, k2

and for u ⩵-k:

In[222]:= Simplifyxyfromuv[{-k, k}] /. p → 2 k2, q → 4 k2 - 1

Out[222]= k2, k (1 + k)

We can unify these in a single elegant formula if we don’t require x ≤ y:

(x, y) ⩵ k2, k2 ± k

Since k2 ⩵ p /2, and the endpoint of the ellipse is (p, p), these solutions are around the midsection of 
the ellipse.  The example 8 /15 seen earlier is of this class, with k ⩵ 2.   Another example, for k ⩵ 3, is
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In[223]:= solveEllipticalBySearch[18 / 35]
Out[223]//TableForm=

x y
6 9
9 12
17 18
18 18

Near-triangular solutions8.5.3 

The reader who would like to move along can skip this section.  I can’t resist including this discovery 
since it is pretty cool, but fairly far into the weeds.

The first 7 solutions found in the reverse search following p /q ⩵ 1 /2, i.e. the smallest elliptical ratios 
having solutions within range of the search, show an intriguing pattern.  The solutions obey the rule 
that the smaller value of the solution for one ratio reappears in the solution for the next ratio as the 
larger value.  This is not the recycling recurrence, since they are for different p /q.   These solutions turn 
out to be related to the triangular numbers that characterize the p /q ⩵ 1 /2 solutions.

I was able to follow the sequence further down the list, with other cases interspersed.  Here are the first 
several ratios obeying that pattern.  I reverse the order of the ratios to be largest to smallest so that the 
solutions will be in order of increasing size.

In[224]:= topellipticals = Reverse
938477

1 876953
,

856088

1712175
,

779248

1558495
,

707702

1415403
,

641201

1282401
,

579502

1 159003
,

522368

1 044735
,
469568

939135
,
420877

841753
,
376076

752151
,
334952

669903
,
297298

594595
,
262913

525825


Out[224]= 
262913

525825
,
297298

594595
,
334952

669903
,
376076

752151
,
420877

841753
,
469568

939135
,

522368

1044735
,

579502

1159003
,

641201

1282 401
,

707702

1415403
,

779248

1558495
,

856088

1712175
,

938477

1876953


These are all of the form p / (2 p - 1), hence have vertex solutions at (p, p) and (p - 1, p).

In[225]:= DeleteDuplicates[
2 p - q /. {p → Numerator /@ topellipticals, q → Denominator /@ topellipticals}]

Out[225]= {1}

Here are the complete solutions.  The reverse search only found those in the range of 999.

In[226]:= solntopellipticals = Table[solveEllipticalBySearch[topellipticals[[i]], False],
{i, Length[topellipticals]}];
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In[227]:= TableForm[solntopellipticals]
Out[227]//TableForm=

497
529

262384
262416

262912
262913

262913
262913

529
562

296736
296769

297297
297298

297298
297298

562
596

334356
334390

334951
334952

334952
334952

596
631

375445
375480

376075
376076

376076
376076

631
667

420210
420246

420876
420877

420877
420877

667
704

468864
468901

469567
469568

469568
469568

704
742

139072
139524

382844
383296

521626
521664

522367
522368

522368
522368

742
781

578721
578760

579501
579502

579502
579502

781
821

640380
640420

641200
641201

641201
641201

821
862

706840
706881

707701
707702

707702
707702

862
904

778344
778386

779247
779248

779248
779248

904
947

855141
855184

856087
856088

856088
856088

947
991

937486
937530

938476
938477

938477
938477

Format of table: each solution is a stack with x above y, solutions for one ratio go right to left.

Now get a list of the small solutions. 

In[228]:= smallsolntopellipticals =

Table[solntopellipticals[[i]][[1]], {i, Length[solntopellipticals]}]

Out[228]= {{497, 529}, {529, 562}, {562, 596}, {596, 631}, {631, 667}, {667, 704}, {704, 742},
{742, 781}, {781, 821}, {821, 862}, {862, 904}, {904, 947}, {947, 991}}

The big non-vertex solutions are symmetrically placed with respect to the center of the ellipse, i.e. p - x 
and p - y where (x, y) is a small solution.

In[229]:= bigsolntopellipticals =

Table[solntopellipticals[[i]][[Length[solntopellipticals[[i]]] - 2]],
{i, Length[solntopellipticals]}]

Out[229]= {{262384, 262416}, {296736, 296769}, {334356, 334390},
{375445, 375480}, {420 210, 420246}, {468864, 468901},
{521626, 521664}, {578 721, 578760}, {640380, 640420},
{706840, 706881}, {778 344, 778386}, {855141, 855184}, {937486, 937530}}
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In[230]:= Numerator /@ topellipticals - bigsolntopellipticals

Out[230]= {{529, 497}, {562, 529}, {596, 562}, {631, 596}, {667, 631}, {704, 667}, {742, 704},
{781, 742}, {821, 781}, {862, 821}, {904, 862}, {947, 904}, {991, 947}}

These are the same as the small solutions with (x, y) swapped.

The small solutions are close to the square roots of the p values.

In[231]:= Round[(Sqrt /@ Numerator /@ topellipticals)]

Out[231]= {513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969}

Look at the v values for these small solutions.

In[232]:= smallsolnvvalues =

Table[smallsolntopellipticals[[i]][[2]] - smallsolntopellipticals[[i]][[1]],
{i, Length[smallsolntopellipticals]}]

Out[232]= {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}

Holy cow!  These are successive integers.  Successive triangular numbers differ by successive integers.   
The x, y are not exactly successive triangular numbers.  They are offset by 1 from triangular.  For 
instance the 43rd triangular number is

In[233]:=
44 × 43

2
Out[233]= 946

The solution value is 947.  Verify that this offset holds for all the solutions.  Generate the series of 
triangular numbers +1 to reproduce the solution set.

In[234]:= Table
n (n - 1)

2
+ 1,

n (n + 1)

2
+ 1, {n, 32, 44}

Out[234]= {{497, 529}, {529, 562}, {562, 596}, {596, 631}, {631, 667}, {667, 704}, {704, 742},
{742, 781}, {781, 821}, {821, 862}, {862, 904}, {904, 947}, {947, 991}}

Check that they all agree.

In[235]:= smallsolntopellipticals ⩵ %

Out[235]= True

The triangular numbers themselves appear in the p /q = 1 /2 solutions, of course.

So it turns out that if x and y are 1 + successive triangular numbers, then their p /q ratio has both vertex 
solutions and the other solutions near the square root of the vertex and symmetrically opposite.  Get 
expressions for p and q, knowing the factor 2 in the numerator of the probability formula always 
divides the denominator.

In[236]:= pfortriangplus1 = Factor[Simplify[x y /. {x → 1 + v (v - 1) / 2, y → 1 + v (v + 1) / 2}]]

Out[236]=
1

4
2 - v + v2 2 + v + v2

56     odds-inversion.nb



Here v can be any positive integer.

In[237]:= qfortriangplus1 =

Simplify[(x + y) (x + y - 1) / 2 /. {x → 1 + v (v - 1) / 2, y → 1 + v (v + 1) / 2}]

Out[237]=
1

2
1 + v2 2 + v2

Show that these formulas give 2 p - q ⩵ 1.  This implies they are relatively prime.

In[238]:= Simplify[2 pfortriangplus1 - qfortriangplus1]

Out[238]= 1

We can put this into a simpler form if we take advantage of the appearance of 2 + v2 in both expres-
sions.  Let w ⩵ 2 + v2.  Then

p ⩵
1

4
(w - v) (w + v) ⩵

1

4
w2 - v2 ⩵

1

4
w2 - w + 2

q ⩵
1

2
w 1 + v2 ⩵

1

2
w (w - 1)

p

q
⩵

w2 - w + 2

2 w (w - 1)
⩵

w (w - 1) + 2

2 w (w - 1)
⩵

1

2
+

1

w (w - 1)

This is simpler, but w can only take on special values. 

In[239]:= Table2 + v2, {v, 1, 10}

Out[239]= {3, 6, 11, 18, 27, 38, 51, 66, 83, 102}

Here are the first 10 ratios obeying this pattern.

In[240]:= triangplus1ratios = Table
1

2
+

1

w (w - 1)
/. w → 2 + v2, {v, 1, 10}

Out[240]= 
2

3
,

8

15
,
28

55
,

77

153
,
176

351
,
352

703
,

638

1275
,
1073

2145
,
1702

3403
,
2576

5151

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In[241]:= Table[{triangplus1ratios[[i]],
solveEllipticalBySearch[triangplus1ratios[[i]]]}, {i, 10}]

Out[241]= 
2

3
,

x y
1 2
2 2

, 
8

15
,

x y
2 4
4 6
7 8
8 8

, 
28

55
,

x y
4 7
21 24
27 28
28 28

, 
77

153
,

x y
7 11
66 70
76 77
77 77

,


176

351
,

x y
11 16
160 165
175 176
176 176

, 
352

703
,

x y
16 22
330 336
351 352
352 352

, 
638

1275
,

x y
22 29
609 616
637 638
638 638

,


1073

2145
,

x y
29 37
1036 1044
1072 1073
1073 1073

, 
1702

3403
,

x y
37 46
1656 1665
1701 1702
1702 1702

, 
2576

5151
,

x y
46 56
2520 2530
2575 2576
2576 2576



The v ⩵ 1, p /q ⩵ 2 /3 is a special case, where the vertex solution (1, 2) coincides with the triangular+1 
solution: it is of the form (0 + 1, 1 + 1).  Mathematically 0 and 1 are triangular, of form n(n + 1) /2 for 
n ⩵ 0, 1 respectively, so this is formally of the form 1 + triangular.  The rest indeed have a non-vertex 
solution that is 1 + successive triangular numbers, its centro-symmetric counterpart, and the vertex 
solutions.  They may also have other solutions, as the instance for v ⩵ 38 in the table of the originally 
discovered instances above shows.

Other families of solutions

The results of the reverse search showed other series of solutions with recurring values, similar to the 
triangular +1 family.  These turned out to be also related to the triangular numbers, but offset by 2 or 
more.  In these cases, the formulas for p and q designed to give solutions consisting of successive 
triangular +k numbers have 2 p - q ⩵ k and therefore are not guaranteed to be in lowest terms or to 
yield vertex solutions if k > 1.  Without a vertex solution, the centro-symmetric counterpart of the small 
solution disappears, since it requires the vertex point to be integer.  I did not pursue this line of inquiry 
further.  Probably many other special cases are waiting to be discovered.

Hyperbolic case: p /q < 1 /29 
Solution of the hyperbolic case is considerably more complicated than for the elliptical or parabolic 
cases.  There is a special category of cases with p ⩵ 1 or 2, treated in Section 6.3, that are easily solved.  
There is also a subcase that is relatively easy to deal with, when the probability equation factors.  This 
occurs when D is square.  It is treated in Section 10.  When D is nonsquare, the problem is related to the 
Pell Equation, and solution requires some advanced mathematics.  This case is treated in Section 11.
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Sign of u, v and admissibility of solutions9.1  
Because u and v appear in Equation (8) squared, either sign of either variable will satisfy the equation.  
But for the hyperbolic case, negative u values will not yield admissible x, y.  Recall from the derivation 
of Equation (8) in Section 4.2.5 that u is related to the total number of balls t by

t ⩵
u - p

q - 2 p

For the hyperbolic case, q > 2 p so the denominator is positive.  If u < 0, then, t < 0, which is inadmissible.

Negative v values give admissible solutions, but not distinct from the ones for positive v.  Changing the 
sign of v corresponds to simply swapping x, y.  We generally make solutions distinct by requiring x ≤ y.  
So to obtain only distinct solutions we can omit negative v.

Therefore in pursuing distinct admissible solutions x, y for the hyperbolic case, we need only make use 
of solutions of (8) with  u > 0, v > 0.

Growth rate of solutions for small p /q9.2  
In Section 5.3.1 it was noted that the reverse search results tend to show few solutions for small p /q 
ratios, implying that the solutions in a series for a given p /q must grow in size rapidly so that they soon 
exceed the limit of the search.  We can understand this qualitatively as follows.  Small p /q ratios require 
a large inequality between x and y.  Let x ⩵β y where β is small compared to 1.  Then the probability of 
different colors is

In[242]:= Simplify[probdifferent[{β y, y}]]

Out[242]=
2 y β

(1 + β) (-1 + y + y β)

Rewrite this as
2 β

(1 + β) (1 + β - 1 / y)

If y is large and β small, this will be approximately 2β.  It approaches 2β as β gets smaller.  The next 
solution given by the recycling recurrence is

In[243]:= Simplify[recycle[{β y, y}]]

Out[243]= y,
-1 + y

β


Thus the next solution is approximately a factor 1 /β larger.  The smaller β ≃ 1
2

p
q

 is, the faster the solu-

tions grow.  Of course, the recycling recurrence does not continue giving integer results.  But solutions 
often come in recycling triplets.  So this result indicates that rapid growth should be expected.
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Ratio x / y for small p /q

Before leaving this section, let’s use the result to see how the ratio β⩵ x / y behaves as a function of 
z ⩵ p /q for small z.  Put ϵ ⩵ 1 / y, which will be small and tend to zero for larger solutions.

In[1108]:= betavsz = SimplifySolvez ⩵
2 β

(1 + β) (1 + β - ϵ)
, β

Out[1108]= β →
2 + z (-2 + ϵ) - 4 + 4 z (-2 + ϵ) + z2 ϵ2

2 z
, β →

2 + z (-2 + ϵ) + 4 + 4 z (-2 + ϵ) + z2 ϵ2

2 z


Expand in Taylor series.  Linear term suffices.

In[1111]:= Series[betavsz[[1]][[1]][[2]], {z, 0, 1}]

Out[1111]=
1

2
(1 - ϵ) z + O[z]2

Thus β → z /2 as ϵ → 0.  This is reasonable, since for z ⩵ 0, x ⩵ 0 with y finite.  Thus β must get smaller as 
z gets smaller.  We conclude that y values will need to be large even for the smallest solutions for small 
z.  For instance, for z ⩵ 1 /1000, β ≃ 1 /2000, requiring y ≳ 2000.

The second solution for β corresponds to x > y.

In[1112]:= Series[betavsz[[2]][[1]][[2]], {z, 0, 1}]

Out[1112]=
2

z
+ (-2 + ϵ) +

1

2
(-1 + ϵ) z + O[z]2

Hyperbolic case, D > 0 square10 
We now turn to the solution of the hyperbolic case, treating square D in this section, and nonsquare D 
in the following section.

If the discriminant D ⩵ q(q - 2 p) is square, Equation (8) can be written in a factored form and solved 
directly.  First we examine which ratios p /q yield D a square.

Ratios p /q giving D square10.1  
The main results of this section are the conditions for D to be square:

◼ If p is even, then q must be square, and also q - 2 p must be square.

◼ If p is odd, then 2 q must be square, and also 2 (q - 2 p) must be square.

Alternatively, set P /Q ⩵ p /2 q , reduced to lowest terms.  Then the conditions are more simply 
expressed as

◼ Require Q and Q - 4 P to both be square.
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This question is most cleanly analyzed using half the probability of different colors,
P

Q
⩵

1

2

p

q

If p is even, then P ⩵ p /2, Q ⩵ q and D ⩵ q(q - 2 p) ⩵ Q(Q - 4 P), whereas if p is odd, P ⩵ p, Q ⩵ 2 q and 

D ⩵ Q
2
Q

2
- 2 P ⩵ 1

4
Q(Q - 4 P).  So in either case we can analyze Q(Q - 4 P) to determine if D is square.

In order for Q(Q - 4 P) to be square, it is necessary that Q itself be square.  Proof: suppose Q nonsquare, 
then it contains a prime factor k to an odd power.  To make Q(Q - 4 P) square, then k must also be a 
prime factor to an odd power of Q - 4 P.  But this requires k to divide 4 P.  It cannot divide P since 
gcd(Q, P) ⩵ 1.  So k must divide 4.  The only possibility is k ⩵ 2.  But 4 is an even power of 2. QED. 

Then since Q is square, it is also necessary for Q - 4 P to be square, say m2, Q ⩵ 4 P + m2.  Setting Q ⩵ l2, 
then l2 - m2 ⩵ 4 P.  The difference of two squares is a multiple of 4 iff they are both even or both odd.  
We can list the first several p /q ratios that meet these requirements.  In the table we convert P /Q back 
to p /q simply using a factor of 1 /2 and let Mathematica reduce to lowest terms.

In[244]:= ratiosforsquareD = DeleteDuplicatesSortFlattenJoin

Table
l2 - m2

2
 l2, {l, 5, 9, 2}, {m, 1, l - 2, 2} (* odd l, m *),

Table
l2 - m2

2
 l2, {l, 4, 10, 2}, {m, 2, l - 2, 2} (* even l, m *)

Out[244]= 
9

50
,
16

81
,

7

32
,
12

49
,

5

18
,

8

25
,
28

81
,
3

8
,
20

49
,
21

50
,
4

9
,
15

32
,
12

25
,
24

49
,
40

81


We needed DeleteDuplicates because in some cases reduction to lowest terms yields odd q in the 
even q table.  The reverse search to 999 found solutions for 21 /50, 12 /25, 24 /49, and 40 /81 but not the 
others.  Below, we will show that the other ratios in this list in fact have no admissible solutions.

The special case p ⩵ 1 or 2 is never square D

In Section 6.3 we saw that there is a simple solution when p ⩵ 1 or 2, which correspond to P ⩵ 1 in the 
half-probability convention.  For Q > 4 these all are in the hyperbolic regime and there is an infinite 
number of solutions for each, beginning with (1, Q - 1) and continuing via the recycling recurrence.  In 
Section 10.2 we will show that if D is square, then the number of solutions is finite.  Therefore the case 
P ⩵ 1 with Q > 4 must never have square D.  We can see that Q(Q - 4 P) ⩵ Q(Q - 4) is never square: that 
would require both Q and Q - 4 to be square.  This would imply existence of a Pythagorean triple 
involving 2, which does not exist.

Method of factorization10.2  
Recall Equation (11)

u2 - D v2 ⩵ f
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where

D ⩵ q (q - 2 p), f ⩵ p2

If D is a square, the equation factors as

u - D v u + D v ⩵ f

where D  is integer by assumption.  The two parenthesized factors on the LHS must equate to divisors 
(positive or negative) of the RHS, f .  So the procedure is to list all the divisors of f , call them 
d1, d2, ... dk, and then equate the first factor to di and the second factor to f /di.  This yields a pair of 
linear equations to be solved for u and v.  Thus

In[245]:= SimplifySolveu - D v ⩵ di, u + D v ⩵ f / di, {u, v}

Out[245]= u →
f + di2

2 di
, v →

f - di2

2 D di


Negative divisors correspond simply to the opposite sign of u or v, so only positive divisors need to be 

tested.  Exchanging d for f /d yields the same u and -v, so we only need to test divisors d ≤ f , i.e. half 
the complete list of divisors.

Keep in mind that all quantities in these equations are integer.  The solutions u and v are not guaran-
teed to be integer but are always rational.  Discard those that are fractional or that yield inadmissible 
solutions for x and y.

Existence and completeness of solutions10.3  
It is evident that this method yields all solutions that exist.  The number of possible solutions is finite 
and it tests them all.  There can be at most as many solutions as positive and negative divisors of p2.  It 
is possible for a specific instance that there will be no admissible solutions.  The case p /q ⩵ 4 /9 is an 
example with no admissible solutions.

Bound on magnitude of solutions10.4  
We can place a bound on the magnitude of the solutions for the hyperbolic square-D case.

=u> ⩵
f + d2

2 d
⩵

1

2

f

=d>
+ =d>

The maximum occurs for the extrema d ⩵ 1 or d ⩵ f , where u ⩵ 1
2
(f + 1).  Converting to t for positive u 

(so the bound is on admissible solutions):
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In[246]:= Simplifytvfromuv
1

2
(f + 1) /. f → p2, v[[1]]

Out[246]= -
(-1 + p)2

4 p - 2 q

So the bound is

t ≤
(p - 1)2

2 (q - 2 p)

In[247]:= tboundSquareD[z_] :=
(Numerator[z] - 1)2

2 (Denominator[z] - 2 Numerator[z])

All the ratios listed above giving square D have a bound within the reverse search limit of t = 2×999.

In[248]:= Floor[tboundSquareD /@ ratiosforsquareD]

Out[248]= {1, 2, 1, 2, 1, 2, 14, 1, 20, 25, 4, 49, 60, 264, 760}

Therefore, if the reverse search did not find a solution for one of these ratios, the ratio has no admissi-
ble solution.  For several of these ratios, the explanation for the lack of solutions is obvious: if t ≤ 2 there 
simply isn’t room for nontrivial solutions.

Function to solve hyperbolic square D case10.5  
This function takes the probability ratio z ⩵ p /q as argument.  It includes an optional argument table-
form that is True (default) if the results should be formatted as a table, if False then the output is a 
list.  The trivial solutions and negative solutions are excluded.

Outline of function:

◼ Make sure D > 1 and square.  (D ⩵ 1 is square but is the degenerate case p ⩵ 0 treated in Section 6.1.)

◼ Get list of positive divisors of f  that are ≤ f /2.

◼ For each divisor, calculate u and v by the factoring method.  These are rational, not necessarily 
integer.

◼ Sift for integer values of u and v.

◼ Convert the list of (u, v) values to (t, v) values.  Sift again for integer values of t.

◼ Convert list of (t, v) values to (x, y) values.  Sift again for integer values.
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In[249]:= solveHyperbolicDsquare[z_, tableform_: True] := Module{p, q, D, f, dlist,

ucandidates, vcandidates, hits, uvalues,
vvalues, tvaluesall, tvalues, xvalues, yvalues, xyvalues},

p = Numerator[z]; q = Denominator[z];
D = q (q - 2 p); f = p2;

IfD > 1 && Element D , Integers,

dlist = Divisors[f];
dlist = dlist[[1 ;; Ceiling[Length[dlist] / 2]]];

ucandidates = Table
f + d2

2 d
, {d, dlist};

vcandidates = Table
f - d2

2 D d
, {d, dlist};

(* first pass: pick out positions where u is integer *)

hits = Position[ucandidates, _Integer];
uvalues = Extract[ucandidates, hits];
vvalues = Extract[vcandidates, hits];
(* second pass: pick out positions where v is integer. It is always ≥0 *)

hits = Position[vvalues, _Integer];
uvalues = Extract[uvalues, hits];
vvalues = Extract[vvalues, hits];
tvaluesall = (u - p) / (q - 2 p) /. u → uvalues;
hits = Position[tvaluesall, t_ /; t > 1 && IntegerQ[t]];
(* require admissible *)

tvalues = Extract[tvaluesall, hits];
vvalues = Extract[vvalues, hits];
xvalues = (tvalues - vvalues) / 2;
yvalues = (tvalues + vvalues) / 2;
(* x,y may still be fractional if t, v not same parity *)

yvalues = Extract[yvalues, Position[xvalues, _Integer, {1}]];
xvalues = Extract[xvalues, Position[xvalues, _Integer, {1}]];
xyvalues = Sort[Table[{xvalues[[i]], yvalues[[i]]}, {i, Length[xvalues]}]];
If[tableform,
TableForm[xyvalues, TableHeadings → {None, {x, y}}],
xyvalues]

,

(* else *) Print["D=", D, " not OK"]



Exercise the discriminant test by giving an elliptical ratio and a hyperbolic ratio with nonsquare D.

In[250]:= solveHyperbolicDsquare[2 / 3]

D=-3 not OK
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In[251]:= solveHyperbolicDsquare[1 / 3]

D=3 not OK

Also test degenerate case p ⩵ 0.  Although D ⩵ 1 is square, the method does not work for this case.

In[252]:= solveHyperbolicDsquare[0]

D=1 not OK

Examples: ratios with smallest p, q giving square D10.5.1 

We can apply the function to the list of ratios found earlier, giving square D calculated above.  The table 
lists the ratio and the set of solutions x, y it has, if any.

In[253]:= TableForm[Table[{z, solveHyperbolicDsquare[z, False]}, {z, ratiosforsquareD}]]
Out[253]//TableForm=

9
50
16
81
7
32
12
49
5
18
8
25
28
81
3
8
20
49
21
50

7 18
4
9
15
32
12
25

9 16
24
49

20 30
40
81

70 92

The results agree with what was found before in identifying the four ratios from this list that have 
solutions.  Each has only one solution.

Example with larger q, p /q close to 1 /210.5.2 

This section can be skipped without loss of continuity.

We may suppose that as p /q approaches 1 /2, and p and q get larger, the number of solutions may 
increase.  Just for fun, let us try a value close to 1 /2 with q ⩵ 992 and q - 2 p ⩵ 1 so that D is square.  We 
use the formula for finding p /q for square D developed in Section 10.1:
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In[254]:= zforD99sq =
l2 - m2

2 l2
/. {l → 99, m → 1}

Out[254]=
4900

9801

The reverse search did not list this ratio among its results.  The bound on t ⩵ x + y is

In[255]:= Floor
(p - 1)2

2 (q - 2 p)
/. {p → Numerator[zforD99sq], q → Denominator[zforD99sq]}

Out[255]= 12000100

So solutions can exist outside the range of the reverse search.

Discriminant is 992 by construction.

In[256]:= D99sq = q (q - 2 p) /. {p → Numerator[zforD99sq], q → Denominator[zforD99sq]}

Out[256]= 9801

RHS f  of Equation (11):

In[257]:= fforD99sq = p2 /. {p → Numerator[zforD99sq], q → Denominator[zforD99sq]}

Out[257]= 24010000

This has a lot of divisors.

In[258]:= Length[Divisors[fforD99sq]]

Out[258]= 125

But most of the divisors do not yield admissible solutions.  Here are the ones that exist.

In[259]:= solveHyperbolicDsquare[zforD99sq]
Out[259]//TableForm=

x y
9560 9800
9800 10045
116400 118825

So there are a few admissible solutions, not a lot.  This ratio did not appear in the reverse search results 
since all the solutions are above the search limit of 999.

Hyperbolic case, D > 0 nonsquare11 
When D > 0 nonsquare, the solution involves the Pell equation.  There are various methods for solving 
the Pell equation.  We will use continued fractions.

Continued fractions11.1  
For the reader who is unfamiliar with the theory of continued fractions (as I was when I started this 
project), here is some basic background.  Hua (1982), Chapter 10, has a full discussion and proofs of the 
claims stated in this section.  Continued fractions are fractions of the form
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For the reader who is unfamiliar with the theory of continued fractions (as I was when I started this 
project), here is some basic background.  Hua (1982), Chapter 10, has a full discussion and proofs of the 
claims stated in this section.  Continued fractions are fractions of the form

x ⩵ a0 +
1

a1 +
1

a2+
1
...

where the ai are integers.  Continued fractions are usually written in the compact form

x ⩵ [a0, a1, a2, ...]

For positive values of x all of the ai are positive.  There are two sign conventions for negative x: the one 
that seems to be more common among mathematicians is that a0 carries the sign of x and the rest of 
the coefficients are positive.  Mathematica has a function to compute continued fractions; for negative 
arguments the coefficients are simply the negatives of those generated for the absolute value of x.  For 
our problem we will always be working with positive values so this difference does not matter.

If x is a rational number, then the continued fraction will terminate at some point.  For irrational num-
bers, it continues without end.  An important fact is that if x is a quadratic irrational, i.e. the irrational 
root of a quadratic equation with rational coefficients, the series repeats.

The continued fraction representation of any real number x can be calculated by the following algo-
rithm.  Start the recurrence with:

α0 ⩵ x
a0 ⩵ ⌊α0⌋

(15)

where ⌊α0⌋ denotes the floor of α0.  Then for n > 0, and as long as αn-1 - an-1 ≠ 0,

αn ⩵
1

αn-1 - an-1
an ⩵ ⌊αn⌋

(16)

Convergents11.2  
The convergents of a continued fraction are the rational numbers obtained by terminating the contin-
ued fraction at any point.  These are the best approximations to the exact value of the full continued 
fraction obtainable with a denominator of a given size.  They can be generated by a recurrence along-
side the continued fraction expansion.  Let hn and kn be the numerator and denominator, respectively 
of the nth convergent.  The recurrence begins with

h0 = a0, h1 = a1 a0 + 1
k0 = 1, k1 = a1

(17)

Then for n > 1,

hn = an hn-1 + hn-2
kn = an kn-1 + kn-2

(18)

(The recurrence can be started at n = 0 by defining h-2 = 0, h-1 = 1, k-2 = 1, k-1 = 0.)

Of course, Mathematica has functions to compute continued fractions and convergents.  We will work 
the recurrence in an example to demonstrate how it goes, but afterward we will let Mathematica do it.
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Of course, Mathematica has functions to compute continued fractions and convergents.  We will work 
the recurrence in an example to demonstrate how it goes, but afterward we will let Mathematica do it.

Conversion to Pell equation11.3  
Because the RHS of Equation (8) is p2, a square, the equation can always be divided through by it to 
yield the Pell Equation:

u

p

2
- q (q - 2 p)

v

p

2
⩵ 1 (19)

Let r ⩵ u /p and s ⩵ v /p, and set D ⩵ q(q - 2 p):

r2 - D s2 ⩵ 1 (20)

Once Equation (20) is solved, set u ⩵ p r and v ⩵ p s to obtain a solution to Equation (8).

I will call this method of solution the “Pell method” to distinguish it from other solution methods to be 
developed later.  

Put the equation into a formula for later use.

In[260]:= pelleqn[{r_, s_}, D_] := r2 - D s2 ⩵ 1

Solution of Pell equation11.4  
The Pell equation r2 - D s2 ⩵ 1 always has solutions in integers if D > 0 is nonsquare.  The smallest 
solution with both u > 0 and v > 0, which I will call the base solution, can be found by setting r /s equal 

to the convergent of D  just before the end of the first repeat cycle if the repeat length is even, or the 
end of the second cycle if the repeat length is odd.  The fact that this works is plausible since the conver-

gents r /s are the best rational approximations to D , and it can be shown that the one just before the 
end of the repeat cycle is especially close.  (The need for a second cycle in case the repeat length is odd 
is due to the errors in the approximation alternating in sign, so the last convergent in the first cycle is 
negative, and gives a solution to the Pell equation with the RHS replaced by -1.  A second cycle is 
needed to get a positive value.)

Additional solutions can be found by running the convergents calculation for additional cycles, using 
the convergent at the end of each repeat cycle (or every other if the repeat length is odd).  However, it is 
preferable to use a recurrence.  If (r0, s0) is the base solution, other solutions are given by

r + s D ⩵ ±r0 + s0 D 
n
, n ∈ ℤ (21)

When the expression on the RHS is expanded, after collecting terms it is always in the form of r + s D .  
Equating rational and irrational parts on each side of the equation gives the new solution.  In this way, 
Equation (21) produces all solutions to the Pell Equation.  We can turn this formula into a recurrence.  
From (21) it follows that for positive solutions

rn+1 + sn+1 D ⩵ r0 + s0 D 
n+1

⩵ rn + sn D  r0 + s0 D 
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In[261]:= Collectrn + sn D  r0 + s0 D , 1, D 

Out[261]= r0 rn + D s0 sn + D (rn s0 + r0 sn)

Equating rational and irrational parts yields the recurrence formula

rn+1 ⩵ r0 rn + D s0 sn
sn+1 ⩵ s0 rn + r0 sn

(22)

I will call (22) the “Pell recurrence” to distinguish it from other recurrences discussed in this document.

We can verify that this recurrence yields a new solution to the Pell equation:

In[262]:= SimplifyExpandr2 - D s2 /. {r → r0 rn + D s0 sn, s → s0 rn + r0 sn}

Out[262]= r0
2 - D s0

2 rn
2 - D sn

2

This equals 1 ·1 ⩵ 1.

From this it follows that the Pell Equation always has an infinite number of solutions.

Since

r + s D 
-1

⩵
r - s D

r + s D  r - s D 
⩵

r - s D

r2 - D s2
⩵ r - s D ,

the recurrence can be run in reverse simply by negating s0.

Define a formula for running the Pell recurrence.  In the formula, {r, s} is a solution, and {h, k} is the 
base solution, treated as parameters along with D.

In[263]:= nextPell[{r_, s_}] := {h r + D k s, k r + h s}

Trivial solutions

The Pell Equation always has a pair of trivial solutions, (r, s) ⩵ (±1, 0).  These correspond to solutions 
of Equation (8) (u, v) ⩵ (±p, 0) noted earlier (in Section 5.2).  The solution (u, v) ⩵ (p, 0) maps to 
(x, y) ⩵ (0, 0).  It is worth noting that applying the Pell recurrence to this trivial solution yields the first 
nontrivial solution:

In[264]:= nextPell[{1, 0}]

Out[264]= {h, k}

Example: p /q ⩵ 7 /1811.4.1 

We are now ready to solve a hyperbolic nonsquare D case.

This example, p /q ⩵ 7 /18 was picked more or less at random from the results of the reverse search, 
which found the following 5 distinct admissible solutions in the range x, y < 1000:

(2, 7), (7, 21), (21, 60), (95, 266), (266, 742)

The continued fraction for D  for this example has a short, even repeat length so we can easily work 
out the convergents by hand (with arithmetical help from Mathematica).
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The continued fraction for D  for this example has a short, even repeat length so we can easily work 
out the convergents by hand (with arithmetical help from Mathematica).

In[265]:= D7o18 = q (q - 2 p) /. {p → 7, q → 18}

Out[265]= 72

This is nonsquare.  We need to solve the Pell equation r2 - 72 s2 ⩵ 1.  We will do it manually for this 
example, as a way of getting familiar with continued fractions and convergents.   We will even refrain 
from using the square root function.  We know that 72 is between 82 ⩵ 64 and 92 ⩵ 81.  So the calcula-

tion can be done without evaluating 72 .

Finding the convergent to solve Pell equation for p /q ⩵ 7 /18

You can skip to the next section if you are not interested in the gory details of the continued fraction 
calculation.

As we run the recurrence, we will put the αn, an, hn, kn into lists.  The indexing of these will be one 
higher than the subscripts in the recurrence formulas given earlier.

In[266]:= cfalpha7o18 =  72 

Out[266]= 6 2 

Set a0 ⩵ 72  which we know is 8.

In[267]:= cfa7o18 = {8}

Out[267]= {8}

Calculate α1.

In[268]:= AppendTo[cfalpha7o18, Simplify[1 / (cfalpha7o18[[1]] - cfa7o18[[1]])]]

Out[268]= 6 2 , 1 +
3

2 2


Now we need to find the floor of α1.  Continuing to insist on not evaluating the square root, we observe 

2 2 ⩵ 8 > 2 .  So 

1 +
3

2 2
< 1 +

3

2
⩵

5

2
⩵ 2.5

So the floor of this is 2.

In[269]:= AppendTo[cfa7o18, 2]

Out[269]= {8, 2}

Next up: n ⩵ 2, list index 3.

In[270]:= AppendTo[cfalpha7o18, Simplify[1 / (cfalpha7o18[[2]] - cfa7o18[[2]])]]

Out[270]= 6 2 , 1 +
3

2 2
, 8 + 6 2 
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Evaluate a2 ⩵⌊α2⌋.

8 + 6 2 ⩵ 8 + 72 < 8 + 8 ⩵ 16

So the floor is 16.

In[271]:= AppendTo[cfa7o18, 16]

Out[271]= {8, 2, 16}

Now for n ⩵ 3.

In[272]:= AppendTo[cfalpha7o18, Simplify[1 / (cfalpha7o18[[3]] - cfa7o18[[3]])]]

Out[272]= 6 2 , 1 +
3

2 2
, 8 + 6 2 , 1 +

3

2 2


We observe that the coefficients are repeating.

In[273]:= AppendTo[cfa7o18, 2]

Out[273]= {8, 2, 16, 2}

Stop here.  Confirm this with Mathematica, which by default lists the non-repeating terms and then the 
repeating terms in a nested list.

In[274]:= ContinuedFraction 72 

Out[274]= {8, {2, 16}}

It is not coincidental that the last term before the repeat begins is 2 a0.  This always happens with 
quadratic irrationals.

Now compute the convergents.  Since the solution we are seeking is associated with the continued 
fraction term just before the last term of the first repeat cycle, i.e. a1 in this case, we don’t need to 
compute many.  Here is a reminder of the initialization:

h0 = a0, h1 = a1 a0 + 1
k0 = 1, k1 = a1

Remember the Mathematica list index is n + 1 since n starts at 0.

In[275]:= cvh7o18 = {cfa7o18[[1]], cfa7o18[[2]] × cfa7o18[[1]] + 1}

Out[275]= {8, 17}

In[276]:= cvk7o18 = {1, cfa7o18[[2]]}

Out[276]= {1, 2}

Now a reminder of the recurrence.  

hn = an hn-1 + hn-2
kn = an kn-1 + kn-2

In[277]:= AppendTo[cvh7o18, cfa7o18[[3]] × cvh7o18[[2]] + cvh7o18[[1]]]

Out[277]= {8, 17, 280}
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In[278]:= AppendTo[cvk7o18, cfa7o18[[3]] × cvk7o18[[2]] + cvk7o18[[1]]]

Out[278]= {1, 2, 33}

Check with Mathematica:

In[279]:= Convergents 72 

Out[279]= 8,
17

2
, 6 2 

Mathematica lists the convergents up to the end of the first repeat, then gives the quadratic irrational 
of the representation of the argument.

The convergent we want is the last before the repeat, 17 /2.  This can also be found by expanding the 
continued fraction:

In[280]:= 8 +
1

2

Out[280]=
17

2

Proceeding with the solution of p /q ⩵ 7 /18 by Pell equation method

To solve the Pell equation, we use h1 ⩵ 17, k1 ⩵ 2 since a2 is the last continued fraction coefficient but 
one of the first cycle before it begins repeating.  Let’s make sure:

In[281]:= h2 - D k2 ⩵ 1 /. {D → 72, h → 17, k → 2}

Out[281]= True

The solution to  Equation (11) is found by multiplying these values by p.

In[282]:= {u7o18, v7o18} = p {17, 2} /. p → 7

Out[282]= {119, 14}

Verify that it satisfies Equation (11).

In[283]:= uveqn[{u7o18, v7o18}] /. {p → 7, q → 18}

Out[283]= True

Convert (u, v) to (x, y).

In[284]:= {x7o18, y7o18} = xyfromuv[{u7o18, v7o18}] /. {p → 7, q → 18}

Out[284]= {7, 21}

This is the second smallest solution found by the reverse search.  Larger solutions can be found via the 
Pell recurrence.  First we find the solutions (r, s) of the Pell equation itself, then convert those to (u, v) 
and then (x, y).
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In[285]:= Pellsolns = RecurrenceTable[
{{r[n + 1], s[n + 1]} ⩵ nextPell[{r[n], s[n]}] /. {h → 17, k → 2, D → 72},
r[1] ⩵ 17, s[1] ⩵ 2}, {r, s}, {n, 3}]

Out[285]= {{17, 2}, {577, 68}, {19601, 2310}}

In[286]:= uvsolns7o18 = p Pellsolns /. p → 7

Out[286]= {{119, 14}, {4039, 476}, {137 207, 16170}}

In[287]:= xysolns7o18 = (xyfromuv /@ uvsolns7o18) /. {p → 7, q → 18}

Out[287]= {{7, 21}, {266, 742}, {9065, 25235}}

We see here two of the solutions found by the reverse search, plus one more that was beyond its range.  
Just to make sure all is working as expected, verify that these each give the desired probability ratio.

In[288]:= DeleteDuplicates[probdifferent /@ xysolns7o18]

Out[288]= 
7

18


We can find the other solutions found by the reverse search by running the recycling recurrence back-
ward and forward.

In[289]:= recycleSolutions[xysolns7o18]
Out[289]//TableForm=

x y
2 7
7 21
21 60
95 266
266 742
742 2067
3256 9065
9065 25235
25235 70246

Indeed, all 5 solutions found by the reverse search are here, plus another 4 that are outside its range of 
x, y < 1000.

The reverse search did not find any solutions that were missed by this combination of solving the Pell 
equation and then finding additional solutions with the recycling recurrence and the Pell recurrence.

Functions to solve the Pell equation11.5  
Here is a function to find the first nontrivial solution of the Pell equation r2 - D s2 ⩵ 1 where D > 0 is 
nonsquare.  Argument is D.  The function is written to be independent of other local functions so it can 
be used in another notebook.  A second function finds the first n solutions by using the Pell recurrence.

Outline of function:
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◼ Check D > 0 and nonsquare

◼ Calculate first cycle of continued fraction using the Mathematica function ContinuedFraction.  
The result is of form {a0, a1, ..., ak, {b1, b2, ..., br}} where the bi are the repeating cycle.

◼ If the repeat length r is even, then this result, flattened to remove the structure, is passed to the 
Mathematica function Convergents to produce the list of convergents.  The r-th convergent gives 
the Pell solution.

◼ If the repeat length r is odd, then the repeating cycle is appended to the result, which is flattened and 
passed to Convergents.  The 2 r-th convergent gives the Pell solution.

◼ Return numerator and denominator of the chosen convergent.  Since this is the base case, they are 
named (h, k).

In[290]:= solvePell[D_] := Module{cf, repeat, replen, hoverk} ,

IfD > 0 && D ∉ Rationals,

cf = ContinuedFraction D ;

repeat = cf[[-1]]; (* repeat cycle is a sub-list as last element *)

replen = Length[repeat];
If[Mod[replen, 2] ⩵ 0,
hoverk = Convergents[Flatten[cf]][[ ;; replen]], (* even replen *)

hoverk = Convergents[Join[Flatten[cf], repeat]][[ ;; 2 replen]] (* odd *)

];
{Numerator[hoverk[[-1]]], Denominator[hoverk[[-1]]]}
(* return last h,k as solution *)

, (* else *) Print["D=", D, " not OK"]





Define another function that generates a list of the first n solutions using the Pell recurrence.  First 
argument is D.  Default for optional second argument n is 1.   Optional third argument tableform is 
True (default) to produce solutions in table form, False for a list of {r, s} pairs.  This function calls 
solvePell to get the base solution of the Pell equation.
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In[291]:= solvePellRecurrence[D_, n_: 1, tableform_: True] := Module[
{hkPell, h, k, rsvalues} ,
hkpell = solvePell[D]; (* get the base solution *)

If[Length[hkpell] ⩵ 2, (* solution was found *)

{h, k} = hkpell;
rsvalues = RecurrenceTable[{

r[i + 1] == h r[i] + D k s[i],
s[i + 1] ⩵ k r[i] + h s[i],
r[1] ⩵ h, s[1] ⩵ k},

{r, s}, {i, n}];
If[tableform,
TableForm[rsvalues, TableHeadings → {None, {"r", "s"}}],
rsvalues

]

]

]

Exercise the test on D > 0 and nonsquare.  Here it is positive but square.

In[292]:= solvePell[64]

D=64 not OK

Here it is negative.

In[293]:= solvePell[-7]

D=-7 not OK

In[294]:= solvePell[1]

D=1 not OK

Examples

Exercise the function on some examples.  Here is the D ⩵ 72 from the previously worked-out 
p /q ⩵ 7 /18.

In[295]:= solvePell[72]

Out[295]= {17, 2}

Generate the first 3 solutions.

In[296]:= solvePellRecurrence[72, 3]
Out[296]//TableForm=

r s
17 2
577 68
19601 2310

Produce the result as a list.
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In[297]:= solvePellRecurrence[72, 3, False]

Out[297]= {{17, 2}, {577, 68}, {19601, 2310}}

Use these to find the x, y solutions for this ratio.

In[298]:= recycleSolutions[xyfromuv /@ (p solvePellRecurrence[72, 3, False]) /. {p → 7, q → 18}]
Out[298]//TableForm=

x y
2 7
7 21
21 60
95 266
266 742
742 2067
3256 9065
9065 25235
25235 70246

Here is a famous example, where the repeat length (11) is long and odd.  Fermat challenged contempo-
rary mathematicians to solve this instance.

In[299]:= solvePell[61]

Out[299]= {1766319 049, 226 153980}

A cautionary example: p /q ⩵ 6 /1711.6  
At this point it may seem that the problem is completely solved: the Pell Equation is always solvable, 
and with the help of the recycling recurrence we can find some solutions it misses.  However, we have 
not proved that the (u, v) solution obtained by solving the Pell Equation always maps to integer (x, y), 
and in fact it does not always.  Furthermore, there can be solutions of Equation (2) that the method 
misses.  Here is an example illustrating both of these issues.

Calculate D.

In[300]:= D6o17 = q (q - 2 p) /. {p → 6, q → 17}

Out[300]= 85

Solve the Pell Equation and multiply the solution by p to obtain (u, v).  Find the first 3 solutions.

In[301]:= uvsolns6o17 = 6 solvePellRecurrence[D6o17, 3, False]

Out[301]= {{1714614, 185976}, {979967056326, 106292351088},
{560088411436 734774, 60750117755947368}}

My, my, those are big.  This happens sometimes with the Pell Equation.

Convert these to (x, y).
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In[302]:= (xyfromuv /@ uvsolns6o17) /. {p → 6, q → 17}

Out[302]= 
392364

5
,
1322244

5
, {44 850530088, 151142881176},


128168 911328498964

5
,
431919500108235804

5


So the first and third solutions are fractional, not admissible.  In Section 12.2 we show that the second 
Pell-method solution is always admissible, and the second obtained by applying the Pell recurrence to 
that, and so on ad infinitum.

Here are the nearby solutions found using the recycling recurrence.

In[303]:= recycleSolutions[%]
Out[303]//TableForm=

x y
13309062481 44850530088
44850530088 151142881176
151142881176 509340034225

There are also solutions missed by the Pell method.  The reverse search turned up the solution 
(x, y) ⩵ (280, 945).

In[304]:= probdifferent[{280, 945}]

Out[304]=
6

17

We can find additional solutions by recycling.

In[305]:= recycleSolutions[{{280, 945}}]
Out[305]//TableForm=

x y
280 945
945 3186
3186 10738

These solutions are much smaller than the smallest solution obtained using the Pell Equation.  Later 
we will develop methods that find all solutions.

Function to solve hyperbolic case via Pell Equation11.7  
Now define a function to use the Pell method to solve Equation (2) for x, y.  Include optional argument 
n to get solutions after the first, and optional tableform for formatting output as table vs. list.    This 
function does not rely on any local function definitions except solvePell and solvePellRecur-
rence.

Outline of the function:
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◼ Solve Pell Equation for base solution {h, k}.  The function will return null and issue an error message 
if D is negative or square.  It will always return a list of length 2 if D > 0 is nonsquare, since the Pell 
Equation always has a solution.

◼ Run the Pell recurrence to generate the first n solutions, including {h, k} as the first.  Convert these to 
{u, v} pairs by multiplying by p.

◼ Convert the {u, v} pairs to {x, y}.  These are not necessarily integer, though they are always non-
negative.

◼ Sift out the integer solutions.

In[306]:= solveHyperbolicByPell[z_, n_: 1, tableform_: True] := Module

{p, q, D, uvsolns, xysolns},
p = Numerator[z];
q = Denominator[z];
D = q (q - 2 p);
uvsolns = solvePellRecurrence[D, n, False];

IfLength[uvsolns] > 0,

uvsolns = p uvsolns;

xysolns = Table

1

2


p - u

2 p - q
- v ,

p - u

2 p - q
+ v  /. {u → uvsolns[[i]][[1]], v → uvsolns[[i]][[2]]},

{i, Length[uvsolns]};

xysolns = Cases[xysolns, {_Integer, _Integer}];
If[tableform,
TableForm[xysolns, TableHeadings → {None, {"x", "y"}}],
xysolns]





Exercise the test for valid D.

In[307]:= solveHyperbolicByPell[4 / 9]

D=9 not OK

In[308]:= solveHyperbolicByPell[5 / 9]

D=-9 not OK

Examples

Exercise it on some examples.  This one yields an admissible solution from each Pell generation.
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In[309]:= solveHyperbolicByPell[7 / 18, 3]
Out[309]//TableForm=

x y
7 21
266 742
9065 25235

In[310]:= solveHyperbolicByPell[7 / 18, 3, False]

Out[310]= {{7, 21}, {266, 742}, {9065, 25235}}

The next example, as we saw above, yields fractional solutions from the first and third Pell solution.  If 
we only ask for one solution, we get none.  When we provide n ⩵ 3, we only get 1 solution.

In[311]:= solveHyperbolicByPell[6 / 17]
Out[311]//TableForm=

{}

In[312]:= solveHyperbolicByPell[6 / 17, 3]
Out[312]//TableForm=

x y
44850530088 151142881176

For most ratios, the function skips the trivial solutions, but ratios with p ⩵ 1 are a special case.

In[313]:= solveHyperbolicByPell[1 / 7, 3]
Out[313]//TableForm=

x y
0 1
1 13
13 156

We will examine the case p ⩵ 1 in the context of the Pell Equation in Section 11.9.  Therefore I regard 
this as a feature of the function, rather than a bug to fix.  Note that (0, 1) does not correspond to the 
trivial solution of the Pell equation; that maps to (0, 0) which indeed is not included in the function 
results.

Here is an example that gives admissible solutions on each generation.

In[314]:= solveHyperbolicByPell[2 / 7, 3]
Out[314]//TableForm=

x y
6 30
696 3336
76590 366966

Solutions from the trivial solutions via Pell recurrence11.8  
From the Pell recurrence formula (21) and the fact that (u, v) ⩵ (p r, p s), we can rewrite the formula so 
the recurrence works directly on (u, v).  Let (u, v) be a solution of (11):
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u2 - D v2 ⩵ f (11)

and let (r, s) be a solution to the Pell equation (20):

r2 - D s2 ⩵ 1 (20)

Then another solution (u ', v ') of Equation (11) is given by equating rational and irrational terms on 
each side of

u' + v' D ⩵ r + s D  u + v D  (23)

Show that this works:

In[315]:= Collectr + s D  u + v D , 1, D 

Out[315]= r u + D s v + D (s u + r v)

Identify u ' ⩵ r u + D s v, v ' ⩵ s u + r v.  Show that they satisfy Equation (11).

In[316]:= Expand(r u + D s v)2 - D (s u + r v)2

Out[316]= r2 u2 - D s2 u2 - D r2 v2 + D2 s2 v2

In[317]:= Collect%, r2, s2

Out[317]= r2 u2 - D v2 + s2 -D u2 + D2 v2

Using the fact that (u, v) satisfies Equation (11), and (r, s) satisfies Equation (20) this is

r2 f + -D s2 f ⩵ r2 - D s2 f ⩵ f

Thus Equation (23) is valid even if (u, v) was not obtained from a Pell Equation solution.

We can write it in the form of a recurrence, where we set h, k to the base solution of (20).

un+1 ⩵ h un + D k vn
vn+1 ⩵ k un + h vn

(24)

If we apply this recurrence to the three trivial solutions, we obtain the Pell solutions and their recycling 
neighbors.  For example, here is what we get applying this to 7/18.  Recall (from Section 5.2) the three 
trivial solutions with u > 0 are (u, v) ⩵ (p, 0), (q - p, ±1).  For p ⩵ 7 and q ⩵ 18 these are (7, 0) and 
(11, ±1).

In[318]:= uvsolns7o18 = Flatten[Table[RecurrenceTable[{
r[i + 1] ⩵ h r[i] + D k s[i],
s[i + 1] ⩵ k r[i] + h s[i],
r[1] ⩵ uv[[1]],
s[1] ⩵ uv[[2]]} /. {h → 17, k → 2, D → 72},

{r, s}, {i, 3}], {uv, {{7, 0}, {11, -1}, {11, 1}}}], 1]

Out[318]= {{7, 0}, {119, 14}, {4039, 476}, {11, -1},
{43, 5}, {1451, 171}, {11, 1}, {331, 39}, {11243, 1325}}

In[319]:= xysolns7o18 = (xyfromuv /@ uvsolns7o18) /. {p → 7, q → 18}

Out[319]= {{0, 0}, {7, 21}, {266, 742}, {1, 0}, {2, 7}, {95, 266}, {0, 1}, {21, 60}, {742, 2067}}
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Apart from the trivial solutions these are the same as generated by recycling the Pell-method solutions.

In[320]:= Sort[%]

Out[320]= {{0, 0}, {0, 1}, {1, 0}, {2, 7}, {7, 21}, {21, 60}, {95, 266}, {266, 742}, {742, 2067}}

In[321]:= recycleSolutions[solveHyperbolicByPell[7 / 18, 2, False], False]

Out[321]= {{2, 7}, {7, 21}, {21, 60}, {95, 266}, {266, 742}, {742, 2067}}

In Section 12.3 it is proved that this always happens.

Classes of solutions11.9  
We now turn to methods that will allow us to find all solutions, and to be certain that we have found 
them all.  In this section we do not apply the restrictions u > 0, v ≥ 0 that we have been using to assure 
admissible solutions to the puzzle.  We need to consider all solutions of Equation (11) that can exist, 
and later winnow the admissible (x, y).

Solution classes and fundamental solutions11.9.1 

Nagell, section 58, presents Equation (23) and defines classes of solutions of Equation (11) according to 
whether they are related via that equation for some values of (r, s).  Define a fundamental solution of 
a class as the member of the class (u0, v0) for which v0 ≥ 0 is smallest.  This determines u0 except for 
sign.  In most cases, different signs of u0 belong to different classes. However, if v0 ⩵ 0, the class is 
called ambiguous, and both signs of u0 belong to it.  In this case, for definiteness take u0 > 0 for the 
fundamental solution.  (In our problem, u ⩵ 0 is never part of a solution of Equation (11), since f  is 
square and D is nonsquare.)

When p ⩵ 1 Equation (11) is the Pell equation.  The Pell recurrence gives all solutions, so for this case all 
solutions are in the same class.  The fundamental solution is the trivial solution, (1, 0).

The three trivial solutions are always present, and except when p ⩵ 1 are members of different classes 
(see later in this section).  Hence the Pell method generates all solutions in these classes.  There may, 
however, be other classes.

We make one change to the definition of a fundamental solution.  Nagell adopts the convention for the 
fundamental solution that v0 ≥ 0 and allows u0 to be opposite in sign for the conjugate class.  Since we 
are interested in positive x, y solutions and u < 0 yields negative ones, it is more convenient for us to 
keep u0 > 0 and let the sign of v0 vary for the conjugate class.  Thus our definition of a fundamental 
solution of a class idss the solution for which u0 > 0 and 0v01 is least.

If (r, s) is any solution of the Pell equation r2 - D s2 ⩵ 1 and (u0, v0) is the fundamental solution of a 
class ℂ, then all solutions of class ℂ are given by

u + v D ⩵ u0 + v0 D  r + s D  (25)

as (r, s) ranges over all solutions of the Pell equation.  Thus we can test whether two solutions belong 
to the same class by solving for r and s and requiring them to be integer.
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as (r, s) ranges over all solutions of the Pell equation.  Thus we can test whether two solutions belong 
to the same class by solving for r and s and requiring them to be integer.

In[322]:= Solve[{u1 r + D v1 s ⩵ u2, u1 s + v1 r ⩵ v2}, {r, s}]

Out[322]= r → -
-u1 u2 + D v1 v2

u12 - D v12
, s → -

u2 v1 - u1 v2

u12 - D v12


Rewrite to remove the initial minus signs.

r →
u1 u2 - D v1 v2

u12 - D v12
, s →

u1 v2 - u2 v1

u12 - D v12
 (26)

The denominator is f .  Therefore require the numerators to be divisible by f .

Define a function for the next few steps where we show the trivial solutions form three classes except 
when p ⩵ 1.

In[323]:= sameClass[{u_, v_}, {U_, V_}, D_] :=
(u U - D v V)  u2 - D v2 ∈ Integers && (v U - u V)  u2 - D v2 ∈ Integers

Verify that the trivial solutions belong to different classes.  They are (p, 0) and (q - p, ±1).

Show  (p, 0) is in a different class from (q - p, ±1)

In[324]:= sameClass[{p, 0}, {q - p, 1}, q (q - 2 p)]

Out[324]=
-p + q

p
∈ ℤ &&

1

p
∈ ℤ

In[325]:= sameClass[{p, 0}, {q - p, -1}, q (q - 2 p)]

Out[325]=
-p + q

p
∈ ℤ &&

1

p
∈ ℤ

Since 1
p
∉ℤ except if p ⩵ 1, these are in different classes.

Show  (q - p, 1) and (q - p, -1) are in different classes.

In[326]:= Simplify[sameClass[{q - p, 1}, {q - p, -1}, q (q - 2 p)]]

Out[326]=
p2 - 4 p q + 2 q2

p2
∈ ℤ &&

2 (p - q)

p2
∈ ℤ

Clearly this requirement is false if p > 1, so again these are in different classes, except if p ⩵ 1.

In[327]:= Simplify[sameClass[{q - p, 1}, {q - p, -1}, q (q - 2 p)] /. p → 1,
Assumptions → {q ∈ Integers}]

Out[327]= True

However, (±p, 0) are in the same class since it is ambiguous.

In[328]:= sameClass[{p, 0}, {-p, 0}, q (q - 2 p)]

Out[328]= True
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Completeness11.9.2 

The concept of classes allows us to define precisely what it means for a solution method to be com-
plete for the hyperbolic case: it must find at least one solution from each class.  From those, all the 
other solutions can be found through the recurrence (24), including running it backwards if the solution 
is not a fundamental solution.

Functions for testing if two solutions are in the same class11.9.3 

Define a more robust function for testing whether two (u, v) solutions belong to the same class.  We can 
usually obtain D and f  from the two solutions, so we will not make them arguments of the function.

In[329]:= Solveu2 - D v2 ⩵ U2 - D V2, D

Out[329]= D →
u2 - U2

v2 - V2


Then f ⩵ u2 - D v2 ⩵ U2 - D V2j.

If v2 ⩵ V2 this is undefined, but in that case the two solutions are either the same or negatives of each 
other, or else conjugates, and are respectively in the same class or in different classes.  So there is no 
need to provide D or f  as an argument.

In[330]:= uvSameClass[{u_, v_}, {U_, V_}] := Module{D, f},

Ifv2 ≠ V2,

D = u2 - U2  v2 - V2;

f = u2 - D v2;
(u U - D v V) / f ∈ Integers && (v U - u V) / f ∈ Integers
, (* else v2⩵V2 case *)

{u, v} ⩵ {U, V} || {u, v} ⩵ -{U, V}




Test this on a few examples drawn from 7 /18.  The trivial solutions:

In[331]:= uvSameClass[{7, 0}, {7, 0}]

Out[331]= True

In[332]:= uvSameClass[{7, 0}, {-7, 0}]

Out[332]= True

In[333]:= uvSameClass[{11, 1}, {-11, -1}]

Out[333]= True

In[334]:= uvSameClass[{11, 1}, {11, -1}]

Out[334]= False

Use this function to identify classes of the previous example 7 /18, D ⩵ 72.  The list was generated with 
3 successive Pell  generations grouped together, so we should see sequences of 3 in the same class, for 
3 classes, 9 solution pairs in each class.
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Use this function to identify classes of the previous example 7 /18, D ⩵ 72.  The list was generated with 
3 successive Pell  generations grouped together, so we should see sequences of 3 in the same class, for 
3 classes, 9 solution pairs in each class.

In[335]:= uvsolns7o18

Out[335]= {{7, 0}, {119, 14}, {4039, 476}, {11, -1},
{43, 5}, {1451, 171}, {11, 1}, {331, 39}, {11243, 1325}}

In[336]:= Position[Table[uvSameClass[uvsolns7o18[[i]], uvsolns7o18[[j]]],
{i, Length[uvsolns7o18]}, {j, Length[uvsolns7o18]}], True]

Out[336]= {{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3},
{4, 4}, {4, 5}, {4, 6}, {5, 4}, {5, 5}, {5, 6}, {6, 4}, {6, 5}, {6, 6},
{7, 7}, {7, 8}, {7, 9}, {8, 7}, {8, 8}, {8, 9}, {9, 7}, {9, 8}, {9, 9}}

Here are the {u, v} solution pairs that are in the same class with each other. 

In[337]:= Table[{uvsolns7o18[[pos[[1]]]], uvsolns7o18[[pos[[2]]]]}, {pos, %}]

Out[337]= {{{7, 0}, {7, 0}}, {{7, 0}, {119, 14}}, {{7, 0}, {4039, 476}}, {{119, 14}, {7, 0}},
{{119, 14}, {119, 14}}, {{119, 14}, {4039, 476}}, {{4039, 476}, {7, 0}},
{{4039, 476}, {119, 14}}, {{4039, 476}, {4039, 476}}, {{11, -1}, {11, -1}},
{{11, -1}, {43, 5}}, {{11, -1}, {1451, 171}}, {{43, 5}, {11, -1}},
{{43, 5}, {43, 5}}, {{43, 5}, {1451, 171}}, {{1451, 171}, {11, -1}},
{{1451, 171}, {43, 5}}, {{1451, 171}, {1451, 171}}, {{11, 1}, {11, 1}},
{{11, 1}, {331, 39}}, {{11, 1}, {11243, 1325}}, {{331, 39}, {11, 1}},
{{331, 39}, {331, 39}}, {{331, 39}, {11243, 1325}}, {{11243, 1325}, {11, 1}},
{{11243, 1325}, {331, 39}}, {{11243, 1325}, {11243, 1325}}}

We can also define a function that determines whether two (x, y) solutions are in the same class.  This 
does not need to be given D or p /q, since p /q is a function of (x, y) except for the trivial solutions.   If 
one of the arguments is one of the trivial solutions, use the p /q of the other.  If both arguments are 
trivial, then they are in different classes unless they are identical, except when p ⩵ 1, which the func-
tion does not know.  In that case alert the user as best we can.
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In[338]:= xySameClass[{x_, y_}, {X_, Y_}] := Module

{z, Z, p, q, u, v, U, V, D, f},
z = -1; Z = -1;
If[(x + y) (x + y - 1) ≠ 0,
z = 2 x y / ((x + y) (x + y - 1));

];
If[(X + Y) (X + Y - 1) ≠ 0,
Z = 2 X Y / ((X + Y) (X + Y - 1));

];
If[Z < 0, Z = z]; (* If one solution is trivial, get p/q from the other *)

If[z < 0, z = Z];
Ifz ≥ 0,

Ifz ⩵ Z,

p = Numerator[z]; q = Denominator[z];
D = q (q - 2 p); f = p2;
{u, v} = {p + (q - 2 p) (y + x), y - x};
{U, V} = {p + (q - 2 p) (Y + X), Y - X};
(u U - D v V) / f ∈ Integers && (v U - u V) / f ∈ Integers,
Print["Solutions do not satisfy same equation"]; (* z ≠ Z *)

False
,

{x, y} ⩵ {X, Y} || p ⩵ 1
(* trivial solutions are in diff classes except if p⩵1 *)





Run this on the x, y solutions corresponding to the u, v solutions for 7 /18.  To avoid redundancy, just 
show the lower triangle j ≤ i.

In[339]:= Position[Table[xySameClass[xysolns7o18[[i]], xysolns7o18[[j]]],
{i, Length[xysolns7o18]}, {j, i}], True]

Out[339]= {{1, 1}, {2, 1}, {2, 2}, {3, 1}, {3, 2}, {3, 3}, {4, 4}, {5, 4}, {5, 5},
{6, 4}, {6, 5}, {6, 6}, {7, 7}, {8, 7}, {8, 8}, {9, 7}, {9, 8}, {9, 9}}

Here are the (x, y) solution pairs that are in the same classes with each other.

In[340]:= Table[{xysolns7o18[[pos[[1]]]], xysolns7o18[[pos[[2]]]]}, {pos, %}]

Out[340]= {{{0, 0}, {0, 0}}, {{7, 21}, {0, 0}}, {{7, 21}, {7, 21}}, {{266, 742}, {0, 0}},
{{266, 742}, {7, 21}}, {{266, 742}, {266, 742}}, {{1, 0}, {1, 0}},
{{2, 7}, {1, 0}}, {{2, 7}, {2, 7}}, {{95, 266}, {1, 0}}, {{95, 266}, {2, 7}},
{{95, 266}, {95, 266}}, {{0, 1}, {0, 1}}, {{21, 60}, {0, 1}}, {{21, 60}, {21, 60}},
{{742, 2067}, {0, 1}}, {{742, 2067}, {21, 60}}, {{742, 2067}, {742, 2067}}}

As expected, this gives the same classes as for the corresponding u, v.  Successive triplets are recycling 
neighbors, which belong to different classes.  To show this more clearly, here is the first nontrivial 
recycling triplet.  They are in different classes.
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As expected, this gives the same classes as for the corresponding u, v.  Successive triplets are recycling 
neighbors, which belong to different classes.  To show this more clearly, here is the first nontrivial 
recycling triplet.  They are in different classes.

In[341]:= recycleSolutions[{{7, 21}}]
Out[341]//TableForm=

x y
2 7
7 21
21 60

In[342]:= xySameClass[{2, 7}, {7, 21}]

Out[342]= False

In[343]:= xySameClass[{7, 21}, {21, 60}]

Out[343]= False

In[344]:= xySameClass[{2, 7}, {21, 60}]

Out[344]= False

Here is a case where p ⩵ 1 so every solution is in the same class, including recycling neighbors and the 
trivial solutions.

In[345]:= recycle[{1, 7}]

Out[345]= {7, 42}

In[346]:= xySameClass[{1, 7}, {7, 42}]

Out[346]= True

In[347]:= xySameClass[{1, 7}, {0, 1}]

Out[347]= True

In[348]:= xySameClass[{1, 7}, {0, 0}]

Out[348]= True

In[349]:= xySameClass[{1, 7}, {1, 0}]

Out[349]= True

The trivial solutions are not in the same class with all solutions if p > 1.  Each Pell generation solution is 
in the same class as its predecessor.

In[350]:= xySameClass[{2, 7}, {0, 1}]

Out[350]= False

In[351]:= xySameClass[{2, 7}, {0, 0}]

Out[351]= False

In[352]:= xySameClass[{2, 7}, {1, 0}]

Out[352]= True

86     odds-inversion.nb



In[353]:= xySameClass[{2, 7}, {95, 266}]

Out[353]= True

The trivial solutions are in different classes unless they are the same or p ⩵ 1.

In[354]:= xySameClass[{0, 1}, {0, 1}]

Out[354]= True

This one is true if and only if p ⩵ 1.

In[355]:= xySameClass[{0, 1}, {0, 0}]

Out[355]= p$19031 ⩵ 1

Solving hyperbolic case by direct search11.10  
Searching for solutions might seem impractical since the hyperbola extends to infinity, but it turns out 
that the fundamental solutions are bounded in size, making search viable in many cases.

Bounds on size of fundamental solution11.10.1 

Nagel section 58 provides bounds on the magnitude of the fundamental solution for any class of 
Equation (11).  In my notation, Nagell’s bounds are (using our convention u0 > 0 and v0 may be either 
sign):

=v0> ≤
k

2 (h + 1)
f ⩵

k p

2 (h + 1)
(27)

0 < u ≤
h + 1

2
f ⩵ p

h + 1

2
(28)

where (h, k) is the fundamental (smallest nontrivial) solution of the Pell equation h2 - D k2 ⩵ 1.  A 
method of solution is therefore to search within this range to find all fundamental solutions.  All solu-
tions of each class are then found by using the recurrence (24).

Asymptotically, as h and k grow, h ≃ k D  so both expressions are proportional to p h  or p k , 
which means the bounds grow much more slowly than h or k.  (Note the similarity to the bounds on v 
for the elliptical case, Section 8.2, where vmax grows inversely as the square root of ϵ ⩵ p /q - 1 /2, 
enabling search to be practical on very elongated ellipses.)

Putting h ≃ k D  and neglecting 1 relative to h, the bound is approximately

=v0> ≲
k p

2 k D
⩵ p

k

2 D

Define a function to calculate the bound for a given ratio.  Use the Floor function to produce an 
integer result.
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Define a function to calculate the bound for a given ratio.  Use the Floor function to produce an 
integer result.

In[356]:= vboundNagell[z_] := Module{p, q, D, hkpell, h, k},

p = Numerator[z]; q = Denominator[z];
D = q (q - 2 p);
hkpell = solvePell[D]; (* get the base solution *)

IfLength[hkpell] ⩵ 2,

{h, k} = hkpell;

Floor
k p

2 (h + 1)






Function to find fundamental solutions (u, v) by direct search11.10.2 

Since 0u1 > 0v1 for our problem (f > 0), the search is best done by testing values of v, as in the elliptical 
case.

Define a function to search for integer solutions of Equation (11) within the range of v set by Nagell’s 
bound on v that can be a fundamental solution of any class.  This function uses solvePell to find 
(h, k) needed for the bound.  It produces a list of (u, v) solutions that are the fundamental solutions for 
their respective classes.  Larger solutions can be found using the Pell recurrence.  These solutions can 
be turned into (x, y) solutions.  We only need to test values of v ≥ 0.  The conjugate classes are obtained 
by reversing the sign of v.

Outline of the function:

◼ Solve Pell equation to get base solution {h, k} needed to calculate bound vmax.

◼ Solve u2 - D v2 ⩵ p2 for u, for each integer v, 0 ≤ v ≤ vmax.

◼ Sift out the integer values of u and pair them with their corresponding v values.
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In[357]:= solveuvBySearch[z_] := Module

{p, q, D, hkpell, h, k, vmax, testvalues, vsolns, usolns},
p = Numerator[z];
q = Denominator[z];
D = q (q - 2 p);
hkpell = solvePell[D]; (* get the base solution *)

IfLength[hkpell] ⩵ 2,

{h, k} = hkpell;

vmax = Floor
k p

2 (h + 1)
;

testvalues = Table p2 + D v2 , {v, 0, vmax};

vsolns = Position[testvalues, _Integer, {1}];
usolns = Extract[testvalues, vsolns];
vsolns = Flatten[vsolns] - 1; (* adjust position 1..n to value 0..n-1 *)

Table[{usolns[[i]], vsolns[[i]]}, {i, Length[vsolns]}]





Exercise the error handling if ratio is not hyperbolic with nonsquare D.

In[358]:= solveuvBySearch[9 / 17]

D=-17 not OK

In[359]:= solveuvBySearch[4 / 9]

D=9 not OK

Including the conjugates

The function returns only solutions with v ≥ 0.  It is sometimes useful to have the complete set of 
fundamental solutions, including the conjugates.  This function takes a set of solutions and joins it with 
the conjugates, sorting and eliminating any duplicates that may have been introduced.

In[360]:= uvIncludeConjugates[uvsolns_] :=
Sort[DeleteDuplicates[Join[uvsolns, Table[{uv[[1]], -uv[[2]]}, {uv, uvsolns}]]]]

Example: p /q ⩵ 7 /18

Applying this to the ratio 7 /18 yields just the trivial solutions.

In[361]:= uvsolnsbysearch7o18 = solveuvBySearch[7 / 18]

Out[361]= {{7, 0}, {11, 1}}

The function suppresses negative v, but we know {11, -1} is another solution.  So there are 3 classes in 
all.  Generate the classes and convert to x, y.

odds-inversion.nb     89



In[362]:= uvfundsolns7o18 = uvIncludeConjugates[uvsolnsbysearch7o18]

Out[362]= {{7, 0}, {11, -1}, {11, 1}}

In[363]:= (xyfromuv /@ uvfundsolns7o18) /. {p → 7, q → 18}

Out[363]= {{0, 0}, {1, 0}, {0, 1}}

Applying the Pell recurrence to the fundamental solutions yields all of the solutions that exist.  So in 
this case, the method of solution via the Pell equation plus recycling recurrence is complete.

Example: p /q ⩵ 6 /17

The function does not warn if the bound on v0 is large, which it can be in some cases.  In Section 11.6 
we saw that 6 /17 has a large first Pell solution.  Let’s see if solving it by search is practical.

In[364]:= {h6o17, k6o17} = solvePell[D6o17]

Out[364]= {285769, 30996}

In[365]:= vboundNagell[6 / 17]

Out[365]= 245

So this is actually not bad.  The approximate proportionality to k  rather than k saves it.

In[366]:= Timing[uvsolnsbysearch6o17 = solveuvBySearch[6 / 17]]

Out[366]= {0.003693, {{6, 0}, {11, 1}, {74, 8}, {249, 27}, {839, 91}}}

Including the conjugates, there are 9 classes.

Example: p /q ⩵ 25 /51

Before writing a function to apply the search method to solve the hyperbolic case for x, y, it is instruc-
tive to work through an example.  The ratio 25 /51 turns out to have more than the 3 classes of the 
trivial solutions, and a relatively small bound on v for the search, so it is a good choice for this.

Calculate D.

In[367]:= D25o51 = q (q - 2 p) /. {p → 25, q → 51}

Out[367]= 51

Find the base solution of the Pell Equation.

In[368]:= {h25o51, k25o51} = solvePell[51]

Out[368]= {50, 7}

Calculate the search bound for v.

In[369]:= vboundNagell[25 / 51]

Out[369]= 17

Find the set of {u, v} solutions.
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In[370]:= uvsolns25o51 = solveuvBySearch[25 / 51]

Out[370]= {{25, 0}, {26, 1}, {110, 15}}

The first is an ambiguous class since v ⩵ 0.  Changing the sign of v in the others gives solutions that are 
in different classes.

In[371]:= uvfundsolns25o51 = uvIncludeConjugates[uvsolns25o51]

Out[371]= {{25, 0}, {26, -1}, {26, 1}, {110, -15}, {110, 15}}

So there are 5 classes in all.  The solutions {25, 0} and {26, ±1} are the trivial solutions.  Calculate the 
{x, y} solutions that these give.

In[372]:= xyfundsolns25o51 = (xyfromuv /@ uvfundsolns25o51) /. {p → 25, q → 51}

Out[372]= {{0, 0}, {1, 0}, {0, 1}, {50, 35}, {35, 50}}

Only 3 of these are distinct, with x ≤ y.  Now find the second generation of {u, v} solutions.

In[373]:= uvgen2solns25o51 = Table[{h25o51 u + D25o51 k25o51 v, k25o51 u + h25o51 v} /.
{u → uvfundsolns25o51[[i]][[1]], v → uvfundsolns25o51[[i]][[2]]},

{i, Length[uvfundsolns25o51]}]

Out[373]= {{1250, 175}, {943, 132}, {1657, 232}, {145, 20}, {10855, 1520}}

In[374]:= xygen2solns25o51 = (xyfromuv /@ uvgen2solns25o51) /. {p → 25, q → 51}

Out[374]= {{525, 700}, {393, 525}, {700, 932}, {50, 70}, {4655, 6175}}

Note that at this stage all the solutions are distinct, because now all v > 0.  But we would not have 
obtained them all if we had used only the positive v solutions in the recurrence.

Compare with the solution found using the Pell Equation method.

In[375]:= solveHyperbolicByPell[25 / 51, 1, False]

Out[375]= {{525, 700}}

This is the first of the 2nd-generation set of solutions, i.e. obtained from the fundamental solution 
(x, y) ⩵ (0, 0).

Put all the solutions into table form.
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In[376]:= TableForm[Sort[Join[xyfundsolns25o51, xygen2solns25o51]],
TableHeadings → {None, {"x", "y"}}]

Out[376]//TableForm=

x y
0 0
0 1
1 0
35 50
50 35
50 70
393 525
525 700
700 932
4655 6175

The table has some solutions we would normally suppress, namely the three trivial solutions and 
(50, 35) which is not distinct from (35, 50).

Function to solve hyperbolic case for (x, y) by search11.10.3 

We write a function to find the fundamental solutions (u, v) by search, optionally use them to generate 
additional solutions via the Pell recurrence, and convert them to (x, y) solutions.  Optional argument 
iters is the number of iterations of the Pell recurrence to use, counting the fundamental solutions as 
iteration 1.  Note that the trivial solutions are always fundamental solutions of their classes.  (For p ⩵ 1 
only one of them is fundamental.)  This means that to get the smallest nontrivial (x, y) from them 
requires iters at least 2..   Any other classes that may exist have fundamental solutions that give 
nontrivial solutions immediately, although these are not necessarily admissible, and may need a Pell 
iteration to get admissible solutions.  For these reasons, the default value of the optional parameter 
iters is 3.  This function uses solvePell but no other local functions.
Outline of function:

◼ Solve for fundamental solutions having v ≥ 0 as in solveuvBySearch.

◼ Extend the list to include conjugate solutions by changing sign of v.  First solution is always (p, 0) 
which has no conjugate partner; the rest always have v > 0 and have conjugates obtained by 
negating v.  (Keeping u > 0 ensures that the Pell recurrence goes to larger positive values.)

◼ Use the Pell recurrence (24) iters times to generate additional solutions.  Note: iters ⩵ 1 means 
only the fundamental solutions result; iters ⩵ 2 means the second generation appear.

◼ Convert the {u, v} solutions to {x, y}.

◼ Sift the {x, y} solutions for distinct admissible solutions.  Apply Sort to each solution in the list to 
make x ≤ y for distinctness according to our convention, because the fundamental solutions with 
v < 0 yield x > y.  Then sort the whole list to put the solutions in order of increasing size.  Remove the 
duplicates created by the sort of each solution.

92     odds-inversion.nb



In[377]:= solveHyperbolicBySearch[z_, iters_: 3, tableform_: True] :=

Module{p, q, D, hkpell, h, k, vmax, testvalues,

usolns, vsolns, uvsolns, xysolns},
p = Numerator[z];
q = Denominator[z];
D = q (q - 2 p);
hkpell = solvePell[D]; (* get the base solution *)

IfLength[hkpell] ⩵ 2,

{h, k} = hkpell;

vmax = Floor
k p

2 (h + 1)
;

(* search for u,v solutions *)

testvalues = Table p2 + D v2 , {v, 0, vmax};

vsolns = Position[testvalues, _Integer, {1}];
usolns = Extract[testvalues, vsolns];
vsolns = Flatten[vsolns] - 1; (* adjust position 1..n to value 0..n-1 *)

usolns = Join[usolns, usolns[[2 ;;]]];
vsolns = Join[vsolns, -vsolns[[2 ;;]]];
uvsolns = Flatten[Table[RecurrenceTable[{

u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ usolns[[n]],
v[1] ⩵ vsolns[[n]]},

{u, v}, {i, iters}],
{n, Length[usolns]}], 1];

xysolns = Table

1

2


p - u

2 p - q
- v ,

p - u

2 p - q
+ v  /. {u → uvsolns[[i]][[1]], v → uvsolns[[i]][[2]]},

{i, Length[uvsolns]};

xysolns = DeleteDuplicates[
Sort[Cases[Sort /@ xysolns, {_Integer?Positive, _Integer?Positive}]]];

If[tableform,
TableForm[xysolns, TableHeadings → {None, {"x", "y"}}],
xysolns]





Examples

Try it out on the example 7 /18 solved earlier.  Here it uses the default of 3 iterations of the Pell recur-
rence.  Since this has only the classes of the trivial solutions, nontrivial solutions appear only after an 
iteration.
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Try it out on the example 7 /18 solved earlier.  Here it uses the default of 3 iterations of the Pell recur-
rence.  Since this has only the classes of the trivial solutions, nontrivial solutions appear only after an 
iteration.

In[378]:= solveHyperbolicBySearch[7 / 18]
Out[378]//TableForm=

x y
2 7
7 21
21 60
95 266
266 742
742 2067

We now know that there are no other solutions than these and the ones produced by running the 
iteration more.

Using only one iteration, only the trivial solutions result, and are suppressed.

In[379]:= solveHyperbolicBySearch[7 / 18, 1]
Out[379]//TableForm=

{}

Here is the example 25 /51 worked out above, which has 2 classes besides the trivial solutions.  Their 
fundamental solutions yield admissible (x, y).

In[380]:= solveHyperbolicBySearch[25 / 51]
Out[380]//TableForm=

x y
35 50
50 70
393 525
525 700
700 932
4655 6175
6175 8190
40524 53725
53725 71225
71225 94424
466690 618675

Now try it on 6 /17, which has 9 classes of solutions, as we saw above.

In[381]:= solveHyperbolicBySearch[6 / 17, 2]
Out[381]//TableForm=

x y
280 945
945 3186
3186 10738
1 932490 6512346
6 512346 21946113
21946113 73956736

Although there are 9 classes and it went through 2 Pell recurrence iterations, the table has only 6 
values.  Here’s why:
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Although there are 9 classes and it went through 2 Pell recurrence iterations, the table has only 6 
values.  Here’s why:

In[382]:= solveHyperbolicBySearch[6 / 17, 1]
Out[382]//TableForm=

{}

The fundamental solutions of all 9 classes do not yield admissible solutions.  But as we saw for the 
solutions obtained via Pell, the next iteration yields admissible solutions.

The ratio 4 /11 has only the trivial solution classes.  The first Pell iteration yields fractional (x, y) so 3 
iterations are needed to get to the first admissible solution.

In[383]:= solveHyperbolicBySearch[4 / 11, 3]
Out[383]//TableForm=

x y
105 336
336 1072
1072 3417

Feasibility of search11.11  
The method of direct search turns out to be quite practical for many cases.  Even the example 6 /17 
which has a rather large base solution of the Pell equation is quickly solved on a modest computer.  
However, much larger base solutions can occur.  Weisstein provides a list of solutions to the Pell equa-
tion for D up to 102.  The solution for D ⩵ 61 is by far the largest.  Since 61 is prime, this requires 
q - 2 p ⩵ 1, so the ratio p /q ⩵ 30 /61.  Let’s look at it.

In[384]:= solvePell[61]

Out[384]= {1766319 049, 226 153980}

The bound on v for this case is

In[385]:= vboundNagell[30 / 61]

Out[385]= 114149

This is not out of the question for a computer to solve, but much more computationally expensive than 
other methods we will look at next.  This example has quite a few classes, and yields admissible solu-
tions directly from the fundamental solutions, so we run it for just 1 iteration.  The formula has been 
disabled so that it won’t be re-executed when the notebook is reopened and evaluated.

In[']:= Timing[solveHyperbolicBySearch[30 / 61, 1]]

Out[']=
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Out[']= 6.85486,

"x" "y"
25 36
78 105
105 140
530 690
690 897
1674 2170
7684 9945
9945 12870
12870 16654
58720 75969
140712 182040
182040 235505



It took only a few seconds to solve.  Since this is the worst case among Pell solutions in Weisstein’s list, 
all D values up to 102 are within reach of search.  And since q ≤ D and p < q /2, this means all ratios with 
p, q of 1 or 2 digits can be solved quickly by search.  However, ultimately there will be cases that are not 
practical.  The next difficult case is D ⩵ 109, which results for p /q ⩵ 54 /109.

In[386]:= solvePell[109]

Out[386]= {158070671 986 249, 15 140424455100}

In[387]:= vboundNagell[54 / 109]

Out[387]= 45982349

Assuming the time to search is proportional to the bound, using the timing for 30 /61, we predict a 
search time of this many hours:

In[388]:= (vboundNagell[54 / 109] / vboundNagell[30 / 61]) 6.85 / 3600

Out[388]= 0.766491

That is feasible, but a rather long time to dedicate to solving one instance.  It is actually an underesti-
mate, since the computations take more time as the integers grow larger.  I went ahead and ran this on 
my laptop, with the following result.

Timing[uvsolnsbysearch54o109 = solveuvBySearch[54 / 109]]

Out[']= {10 288.4, {{54, 0}, {55, 1}, {1035, 99}, {1254, 120},
{39621, 3795}, {48015, 4599}, {1517770, 145376}, {1839321, 176175},
{2228995, 213499}, {70459290, 6748776}, {85386621, 8 178555}}}

Convert time to hours.

In[389]:= 10288.4 / 3600

Out[389]= 2.85789

Almost 3 hours.  So this instance is at the border of what is feasible by search.

Here is one that is definitely out of reach, D ⩵ 421 (it has the largest Pell solution for D ≤ 500).
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In[390]:= solvePell[421]

Out[390]= {3879474 045914926879 468 217167061449, 189073995951839020880499780706260}

In[391]:= vboundNagell[210 / 421]

Out[391]= 450764467341464 849

Extrapolate the running time in seconds, again assuming proportionality, using the D ⩵ 109 time.

In[392]:= (vboundNagell[210 / 421] / vboundNagell[54 / 109]) 10288.4

Out[392]= 1.00857 × 1014

Convert to years.

In[393]:= % / (3600 × 24 × 365.25)

Out[393]= 3.19597 × 106

And this is probably an underestimate, because of the extra time it takes to do arithmetic on such large 
integers.  One could imagine writing an optimized program and running it on a supercomputer to 
perhaps reduce this to a human timescale, but clearly this is not the way to go.  This ratio actually has a 
modest-sized solution found by the reverse search, (x, y) ⩵ (196, 225).

In[394]:= probdifferent[{196, 225}]

Out[394]=
210

421

Conclusion: while the method of direct search is simple and reasonably fast for many cases, it will be 
impractical for some cases.

Now we present a method of solution that is efficient and (I believe) complete.

Method of solution by reduction of RHS to 111.12  
Alpern and Hua both provide methods of solving Equation (11) using continued fractions.  (Alpern 
acknowledges Iain Davidson as his source for the method.  It is probably owing to some earlier mathe-
matician, but I have not located the original source.)

If f < D , then if Equation (11) has a solution, the solution must be found among the convergents of 

D , but if f ≠ 1, the convergent(s) giving the solution(s) will not be located at the end of a repeat cycle.  

If f ≥ D , solutions are not guaranteed to be found among these convergents.  So an approach is to 

transform the equation to bring the RHS to a magnitude less than D .  Hua’s method recursively 

reduces f  until it is less than D , while keeping the form of the equation the same.  Alpern’s method 
reduces f  to 1 in one step, at the cost of introducing a cross term involving u v.  However, the solution 
can still be found using continued fractions.

Hua’s method is complete.  I believe Alpern’s method is also complete, though I have not seen a proof.

Here I present Alpern’s method.  Since I don’t know the correct person to attribute it to, I will call it the 
method of “reduction of RHS to 1,” or just “reduction” for short.  Hua’s method, which I call the method 
of “recursive reduction,” is given in Section 11.13.
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Here I present Alpern’s method.  Since I don’t know the correct person to attribute it to, I will call it the 
method of “reduction of RHS to 1,” or just “reduction” for short.  Hua’s method, which I call the method 
of “recursive reduction,” is given in Section 11.13.

The method of reduction requires the coefficients of u2 and v2 to be relatively prime, which they are.  
Let

u ⩵ s v - f w (29)

where w is a new variable, and s is a parameter to be determined as described below.

In[395]:= CollectExpandu2 - D v2 ⩵ f /. u → s v - f w, w2, v w, v2

Out[395]= -D + s2 v2 - 2 f s v w + f2 w2 ⩵ f

Dividing by f , and rearranging,

s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1 (30)

To make the coefficient of v2 integer, we need to choose s so that s2 - D is divisible by f :

s2 - D ≡ 0 (mod f) (31)

Values of s satisfying this congruence can be found by searching between 0 and f - 1.  The range of 
search can be cut in half by noting that if s is a solution, then f - s is also a solution, since s2 is congru-
ent to (f - s)2 mod f .  Hence it suffices to search up to f /2.  f /2 itself cannot be a solution, since it would 
imply f 2 4 - D ≡ 0 (mod f ).  Multiply by 4, to obtain f 2 - 4 D ≡ 0 (mod f ).  For our problem, f  is square.  So 

unless f ⩵ 4, this implies f  and D have a common divisor.  If f ⩵ 4, the congruence is 4 - D ≡ 0 (mod 4), 
which requires D even, again not relatively prime to f .  So we can search 0 ≤ s < f /2 and obtain the rest 
of the solutions by symmetry.  It is interesting that if f  is even, then if s is a solution, f /2 - s is also a 
solution.  This would allow the search range to be cut in half again.  However, it is useful only for even f , 
so in order not to complicate the logic, the solution routine below does not try to take advantage of 
this.

◼ Comment: solving s2 - D ≡ 0 (mod f ) is equivalent to finding n such that D + n f ⩵ s2, i.e. a multiple of 
f  added to D yields a square.  When searching for values of n giving squares, only values n < f /4 need 
to be tested.  If s is a solution, then f - s is also a solution, since (f - s)2 ≡ s2 (mod f ).  Since only s < f  
are sought, either s or f - s is less than or equal to f /2, hence s2 ≤ f 2 4, so n f < s2 ≤ f 2 4, or n < f /4.  I 
tried this method of solving the congruence, but found that despite having a search range half the 
size of the search on s, the need to take a square root for the test, rather than simply a modulus, 
causes it to run slower in Mathematica than a search on s.  There is a clever approach called the 
method of excludents that allows one to rule out large portions of the search space, but it does not 
seem readily turned into an automated method.  It is not worth putting a lot of effort into speeding 
up the solving of the congruence anyway.  It dominates the compute time only for large values of p, 
larger than 500 or so (as implemented here).

Observe that s ⩵ q - p is always a solution to the congruence s2 - D ⩵ p2.  D ⩵ q(q - 2 p) ⩵ (q - p)2 - p2.  
In the congruence, the term p2 can be dropped, leaving s2 - (q - p)2 ≡ 0 mod p2.  Clearly s ⩵ q - p 

satisfies this.  Then also p2 - s ⩵ p2 - (q - p) is another solution.  So 2 solutions always exist.  (If q is 
large, q - p may exceed the bound f - 1.  In that case, its equivalent mod f  will be found instead.)  We 
show below that these lead to the trivial solutions.
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Observe that s ⩵ q - p is always a solution to the congruence s2 - D ⩵ p2.  D ⩵ q(q - 2 p) ⩵ (q - p)2 - p2.  
In the congruence, the term p2 can be dropped, leaving s2 - (q - p)2 ≡ 0 mod p2.  Clearly s ⩵ q - p 

satisfies this.  Then also p2 - s ⩵ p2 - (q - p) is another solution.  So 2 solutions always exist.  (If q is 
large, q - p may exceed the bound f - 1.  In that case, its equivalent mod f  will be found instead.)  We 
show below that these lead to the trivial solutions.

For each value of s (positive or negative) satisfying Equation(31), Equation (30) can be solved using the 
method of continued fractions.  (See Hua, Section 11.5, Exercise 2.)  Solutions, if they exist, will be given 
by v /w equal to a convergent of the roots r of the companion quadratic equation obtained by setting 
w ⩵ 1 and v ⩵ r in the LHS of Equation (30) and equating to 0:

s2 - D

f
r2 - 2 s r + f ⩵ 0 (32)

In[396]:= SimplifySolve
s2 - D

f
r2 - 2 s r + f ⩵ 0, r

Out[396]= r → -
f

D - s
, r →

f

D + s


These roots can be expressed in a single formula

r →
f

s ± D
(33)

Changing the sign of s amounts to changing the overall sign of r, which changes only the signs of the 
convergents.  Since changing sign of s and one of w or v leaves Equation (30) unchanged, we do not 
need to test negative values of s.  Let δ = ±1 hold the sign on the radical.  Then we have

r →
f

s + δ D

where s is a positive solution of the congruence (31) and δ = ±1.

In order for the method to be complete, one more step is needed.  The method outlined above only 
finds solutions (u, v) that are relatively prime.  Other solutions may exist that are not relatively prime.  
Suppose gcd(u, v) ⩵ d > 1, then d2 must divide f .  To find those solutions, then, one can divide Equation 
(11) by d2, solve, and then multiply the solution by d.  (This is, of course, the same method as used 
earlier to find solutions by the Pell method using d ⩵ p.)  Thus, for each square divisor d2 of f , solve


u

d

2
- D 

v

d

2
⩵

f

d2

then multiply the solution by d.  Since f ⩵ p2, it has a square divisor for each divisor of p.

Trivial solutions are found by this method11.12.1 

This section can be skipped without loss of continuity.  We show that the trivial solutions will be found 
by this method.

Observe that when d ⩵ p,  f d2 ⩵ 1 is the new f , and the congruence (31) will always be satisfied, but 

the search range is limited to s ⩵ 0.   Then Equation (30) is satisfied by {v → 0, w → 1}.
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In[397]:= Simplify
s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1 /. {f → 1, s → 0, v → 0, w → 1}

Out[397]= True

Then u
d
⩵ s v - f w ⩵ w so this solution maps to the trivial solution {u →±p, v → 0}.  We can show it will 

arise in the course of solution.  When s ⩵ 0, the root r ⩵±1 D  is less than 1 in magnitude so it has 0 

as its first convergent, giving v ⩵ 0, w ⩵ 1.  This trivial solution will be found twice, once for δ ⩵ 1 and 
once for δ ⩵-1.

In[398]:= Simplify[d {s v - f w, v} /. {d → p, s → 0, f → 1, v → 0, w → 1}]

Out[398]= {-p, 0}

When d ⩵ 1, f ⩵ p2 and with Mathematica’s help we can see the other trivial solutions 
{u →±(q - p), v →±1} arising.

In[399]:= Reduce
s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1 /. f → p2, D → q (q - 2 p), v → 1, w → 1,

p > 0, q > 2 p, 0 ≤ s < p2, s

Out[399]= p > 1 && 2 p < q ≤ p + p2 && s ⩵ p + p2 - q

This solution is within the range 0 ≤ s < f ⩵ p2 since q > 2 p.  (It is the solution s ⩵ p2 - (q - p) obtained in 
the previous section using other arguments.)

Verify that this solution satisfies the congruence:

In[400]:= Simplifys2 - D /. s → p + p2 - q, D → q (q - 2 p)

Out[400]= p2 1 + 2 p + p2 - 2 q

This is divisible by p2 as required.  Now verify that the trivial solution {v → 1, w → 1} satisfies Equation 
(30):

In[401]:= Simplify
s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1 /. s → p2 + p - q, f → p2, D → q (q - 2 p), v → 1, w → 1

Out[401]= True

This solution maps to a trivial {u, v} solution.

In[402]:= Simplifyd {s v - f w, v} /. d → 1, s → p2 + p - q, f → p2, v → 1, w → 1

Out[402]= {p - q, 1}

This solution will be found because if δ ⩵ 1 the root r will be in the range 1 < r < 2 so its first convergent 
will be 1, giving v /w ⩵ 1 /1.
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In[403]:= Reduce1 <
f

s + D
/. f → p2, s → p2 + p - q, D → q (q - 2 p) < 2 && p ≥ 1 && q > 2 p,

{p, q}, Integers

Out[403]= (p q) ∈ ℤ && ((p ⩵ 1 && q ≥ 3) || (p ⩵ 2 && q ≥ 5) || (p ≥ 3 && q > 2 p))

The conditions on p and q agree with p /q being any hyperbolic ratio.  This trivial solution will also be 
found the second time, when δ ⩵-1, only for certain ratios.

In[404]:= Reduce1 <
f

s - D
/. f → p2, s → p2 + p - q, D → q (q - 2 p) < 2 && p ≥ 1 && q > 2 p,

{p, q}, Integers

Out[404]= (p q) ∈ ℤ && p ≥ 3 && 2 p < q <
1

4
4 + 4 p + p2

Changing signs gives the other trivial solutions, {±(q - p), ±1}.  So we see that the method developed 
here will generate the trivial solutions.

Example: p /q ⩵ 4 /11 solved manually by method of reduction11.12.2 

This section can be skipped, unless you are interested in the gory details.

To see how the method of reduction works in practice, we solve a small example manually (with arith-
metical assistance from Mathematica, of course).  The process is rather lengthy, so we just do enough 
of it to obtain a few solutions.

Calculate D for this example.

In[405]:= D4o11 = q (q - 2 p) /. {p → 4, q → 11}

Out[405]= 33

The divisors of 4 are 1, 2, and 4.  Begin with divisor 1, so f ⩵ 42 ⩵ 16.  We are solving

u2 - 33 v2 ⩵ 16

Find values of s satisfying the congruence s2 - D ≡ 0 (mod f ), s2 - 33 ≡ 0 (mod 16).  Search s between 0 
and 7.

In[406]:= Tables, Mods2 - 33, 16 ⩵ 0, {s, 0, 7}

Out[406]= {{0, False}, {1, True}, {2, False},
{3, False}, {4, False}, {5, False}, {6, False}, {7, True}}

The values of s satisfying the congruence are 1, 7.  By symmetry, 16 - s are also solutions, giving addi-
tionally 9 and 15.  Take each in turn.

◼ s ⩵ 1

s2 - D

f
⩵

1 - 33

16
⩵ -2
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The roots r whose convergents will provide the solution are

r →
f

s ± D
⩵ 

16

1 + 33
,

16

1 - 33

In[407]:= Convergents
16

1 + 33


Out[407]= 2,
5

2
,
7

3
,
19

8
,
1

2
-1 + 33 

In[408]:= Convergents
16

1 - 33


Out[408]= -3, -
7

2
, -

10

3
, -

27

8
,
1

2
-1 - 33 

Both have even repeat length, so we use just the first cycle.

In[409]:= cv4o11s1 = JoinConvergents
16

1 + 33
, 4, Convergents

16

1 - 33
, 4

Out[409]= 2,
5

2
,
7

3
,
19

8
, -3, -

7

2
, -

10

3
, -

27

8


See which of these provide a solution to Equation (30).

s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1, or

-2 v2 - 2 v w + 16 w2 ⩵ 1

In[410]:= Tablecv, -2 v2 - 2 v w + 16 w2 ⩵ 1 /. {v → Numerator[cv], w → Denominator[cv]},

{cv, cv4o11s1}

Out[410]= {2, False}, 
5

2
, False, 

7

3
, False, 

19

8
, False,

{-3, False}, -
7

2
, False, -

10

3
, False, -

27

8
, False

None of these work.  Try the next s.

◼ s ⩵ 7

s2 - D

f
⩵

49 - 33

16
⩵ 1

The roots r whose convergents will provide the solution are

r →
f

s ± D
⩵ 

16

7 + 33
,

16

7 - 33
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In[411]:= Convergents
16

7 + 33


Out[411]= 1,
4

3
,
5

4
,
54

43
,
59

47
, 7 - 33 

In[412]:= Convergents
16

7 - 33


Out[412]= 12, 13,
38

3
,
51

4
, 7 + 33 

The first has odd repeat length, the second is even.  Use 2 cycles and 1 cycle respectively.

In[413]:= cv4o11s7 = JoinConvergents
16

7 + 33
, 10, Convergents

16

7 - 33
, 4

Out[413]= 1,
4

3
,
5

4
,
54

43
,
59

47
,
172

137
,
231

184
,
2482

1977
,
2713

2161
,
7908

6299
, 12, 13,

38

3
,
51

4


See which of these provide a solution to Equation (30).

s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1, or

v2 - 14 v w + 16 w2 ⩵ 1

In[414]:= Tablecv, v2 - 14 v w + 16 w2 ⩵ 1 /. {v → Numerator[cv], w → Denominator[cv]},

{cv, cv4o11s7}

Out[414]= {1, False}, 
4

3
, False, 

5

4
, True, 

54

43
, False, 

59

47
, False,


172

137
, False, 

231

184
, True, 

2482

1977
, False, 

2713

2161
, False,


7908

6299
, False, {12, False}, {13, False}, 

38

3
, False, 

51

4
, True

We have 3 solutions: (v, w) ⩵ (5, 4), (231, 184), and (51, 4).  Convert to (u, v) using 
u ⩵ s v - f w ⩵ 7 v - 16 w.

In[415]:= Table[{7 v - 16 w, v} /. {v → vw[[1]], w → vw[[2]]},
{vw, {{5, 4}, {51, 4}, {231, 184}}}]

Out[415]= {{-29, 5}, {293, 51}, {-1327, 231}}

Verify that these satisfy Equation (11).

In[416]:= DeleteDuplicatesTableu2 - 33 v2 ⩵ 16 /. {u → uv[[1]], v → uv[[2]]}, {uv, %}

Out[416]= {True}

Let’s stop here.

Function to solve for (u, v) by method of reduction11.12.3 

We first write a function to find solutions (u, v) of Equation (11) by the method of reduction.  The Pell 
recurrence can be used later to find additional solutions as desired.  These solutions can be trans-
formed into solutions (x, y) of Equation (2).  This function does not make use of any other locally 
defined functions.
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We first write a function to find solutions (u, v) of Equation (11) by the method of reduction.  The Pell 
recurrence can be used later to find additional solutions as desired.  These solutions can be trans-
formed into solutions (x, y) of Equation (2).  This function does not make use of any other locally 
defined functions.

Outline of function:

◼ Make sure D is positive and nonsquare.

◼ Initialize list of solutions to empty set.

◼ For each divisor d of p, whose square is a square divisor of f ⩵ p2:

◼ Divide p2 by d2 to use as RHS f  of u2 - D v2 ⩵ f , to seek relatively prime solutions u, v.

◼ Make a list of s values satisfying the congruence s2 - D ≡ 0 (mod f ), 0 ≤ s < f .  Note that if s ⩵ 0, (as it is if 
and only if f ⩵ 1 since D and f  are relatively prime), the symmetry rule gives the other solution f - s ⩵ f , 
which is the same as 0 mod f .  So handle f ⩵ 1 as a special case.

◼ Make a list of the form s, h
k

, e, ... where s are the values in the list from the previous step, hk is one 

of the convergents of the roots r of the companion quadratic (32) for that value of s, given by (33), and e 
is True or False according to whether {v → h, w → k} satisfies Equation (30).  Search the first cycle of 
convergents if the repeat length is even, two cycles if it is odd.  (First calculate the continued fraction, 
then if repeat length is odd, concatenate repeat portion onto end of list to get second cycle.  Make use 
of Convergents option to compute convergents from a list of continued fraction coefficients.)  Note 
that in Equation (30), the factor s2 - D f  is assured to be integer by the choice of s.  The list initially 
has depth 4 because there is a triple for each value of s and sign δ and each convergent.  Use Flatten to 
remove two levels.

◼ Extract the triples in the list where e is true.  (A search is unnecessary if f ⩵ 1, since in that case, the 
solution is always obtained from the r-th convergent, where r is the repeat length if that is even, or 
twice that if odd.   Also, if f ⩵-1, there is a solution only if the repeat length is odd, and it is found at the 
end of the first repeat cycle. However, the routine does not take advantage of these economizations.)

◼ Append the solutions {u, v} ⩵ d {h, k} from this list to the list of u, v solutions.

◼ Sort and remove duplicates from the list and return it as the result.  Since either sign of u or v 
satisfies Equation (11), we take the absolute value.

In[417]:= solveuvByReduction[z_] := Module

{p, q, D, f, d, svalues, vwsolns, svwlist, uvlist},
p = Numerator[z]; q = Denominator[z];
D = q (q - 2 p);

IfD > 0 && D ∉ Rationals,

uvlist = {};

Do (* loop on square divisors of RHS *)

f = (p / d)2;
Iff ⩵ 1,

svalues = {0},
svalues =

;
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In[417]:=

svalues =

FlattenPositionTableMods2 - D, f ⩵ 0, {s, Ceiling[f / 2 - 1]}, True;

svalues = Join[svalues, f - svalues];
;

vwsolns = FlattenTable

Module{r, convergents, contfrac, repeat, replen},

r =
f

s + δ D
;

contfrac = ContinuedFraction[r];
(* List is of form {a0, a1, ... an,{b0, b1, ... bm}} *)

repeat = contfrac[[-1]]; (* extract the repeat cycle at end *)

replen = Length[repeat];
If[Mod[replen, 2] ⩵ 0,
convergents =

Convergents[Flatten[contfrac][[ ;; replen]]], (* even replen *)

convergents = Convergents[Join[Flatten[contfrac], repeat][[ ;; 2 replen]]]
(* odd *)

];

Tables, cv,
s2 - D

f
v2 - 2 s v w + f w2 ⩵ 1 /.

{v → Numerator[cv], w → Denominator[cv]},

{cv, convergents}

(* end Module *) ,

{s, svalues}, {δ, {-1, 1}}, (* end of outer Table *)

(* Flatten to remove two Table layers *) 2;

svwlist = Cases[vwsolns, {_, _, True}];
uvlist = Join[uvlist,

d Table[{s v - f w, v} /.
{s → svwlist[[i]][[1]],
v → Numerator[svwlist[[i]][[2]]],
w → Denominator[svwlist[[i]][[2]]]},

{i, Length[svwlist]}]];
, (* end do *)

{d, Divisors[p]}

;

DeleteDuplicates[Sort[Abs[uvlist]]]
, (* else *) Print["D=", D, " not OK"]





Exercise the check on validity of D.
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In[418]:= solveuvByReduction[4 / 9] (* square *)

D=9 not OK

In[419]:= solveuvByReduction[5 / 7] (* elliptical *)

D=-21 not OK

Examples11.12.4 

Example: p /q ⩵ 7 /18

Try it out on the example 7 /18 done earlier.

In[420]:= uvsolnsbyreduction7o18 = solveuvByReduction[7 / 18]

Out[420]= {{7, 0}, {11, 1}, {331, 39}}

Verify that these satisfy the equation.

In[421]:= DeleteDuplicates[(uveqn /@ uvsolnsbyreduction7o18) /. {p → 7, q → 18}]

Out[421]= {True}

This example has only the trivial solutions as fundamental.  There are 3 solution classes.

In[422]:= uvfundsolns7o18

Out[422]= {{7, 0}, {11, -1}, {11, 1}}

The other solutions found by the method of reduction must be members of these classes.

In[423]:= Position[Table[uvSameClass[uvbyreduction, uvfund],
{uvbyreduction, uvsolnsbyreduction7o18}, {uvfund, uvfundsolns7o18}], True]

Out[423]= {{1, 1}, {2, 3}, {3, 3}}

The first number of each pair is the index in the list of solutions found by the method of reduction.  The 
second number is the index of the matching solution in the list of fundamental solutions.  All 10 are 
members of one of the three classes.

Example: p /q ⩵ 6 /17

Now let’s do 6 /17, which has 9 classes of solutions.  These were found by search earlier:

In[424]:= uvsolnsbysearch6o17

Out[424]= {{6, 0}, {11, 1}, {74, 8}, {249, 27}, {839, 91}}

Include the conjugate solutions to have all 9 classes represented.

In[425]:= uvfundsolns6o17 = uvIncludeConjugates[uvsolnsbysearch6o17]

Out[425]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}
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In[426]:= Timing[uvsolnsbyreduction6o17 = solveuvByReduction[6 / 17]]

Out[426]= {0.086155, {{6, 0}, {11, 1}, {74, 8}, {249, 27}, {839, 91}, {6131, 665},
{20661, 2241}, {69626, 7552}, {508799, 55187}, {5778119, 626725}}}

Above, the timing for direct search was 0.0055 seconds, so this method is actually slower for this case.

Check class membership for the solutions found by reduction.  In this list, the first index is the position 
of the solution in the reduction results, and the second index is the position in the list of fundamental 
solutions, which we can identify with the class number.

In[427]:= Position[Table[uvSameClass[uvbyreduction, uvfund],
{uvbyreduction, uvsolnsbyreduction6o17}, {uvfund, uvfundsolns6o17}], True]

Out[427]= {{1, 1}, {2, 3}, {3, 5}, {4, 7}, {5, 9}, {6, 8}, {7, 6}, {8, 4}, {9, 2}, {10, 3}}

The 2nd and 9th solutions are in the same class, leaving one class missing, class 8.  But not to worry, we 
find it among the conjugate solutions.  This is not the method’s fault: it is implemented to return only 
positive values, so members of conjugate classes can be missed.  Class 8 is (839, -91} and the method 
of reduction yielded its conjugate {839, 91} as its 5th solution.  Augment the list of solutions by search 
with their conjugates.

In[428]:= uvallsolnsbyreduction6o17 = uvIncludeConjugates[uvsolnsbyreduction6o17]

Out[428]= {{6, 0}, {11, -1}, {11, 1}, {74, -8}, {74, 8}, {249, -27}, {249, 27},
{839, -91}, {839, 91}, {6131, -665}, {6131, 665}, {20661, -2241},
{20661, 2241}, {69626, -7552}, {69626, 7552}, {508799, -55187},
{508799, 55187}, {5778119, -626725}, {5778119, 626725}}

See which classes these correspond to.

In[429]:= Position[Table[uvSameClass[uvbyreduction, uvfund],
{uvbyreduction, uvallsolnsbyreduction6o17}, {uvfund, uvfundsolns6o17}], True]

Out[429]= {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}, {7, 7}, {8, 8}, {9, 9}, {10, 9},
{11, 8}, {12, 7}, {13, 6}, {14, 5}, {15, 4}, {16, 3}, {17, 2}, {18, 2}, {19, 3}}

All of the solutions by reduction, now that conjugates are included, match a fundamental solution 
class, and all 9 classes are represented. 

Example: p /q ⩵ 210 /421

Finally, to show that this method can solve a problem that is out of reach of direct search, we do 
210 /421.  The estimated time to search for all fundamental solutions calculated above was over a 
million years.

In[430]:= Timing[uvsolnsbyreduction210o421 = solveuvByReduction[210 / 421]]

Out[430]= {0.972827, {{210, 0}, {211, 1}, {631, 29}, {2737, 133}, {8210, 400},
{9051, 441}, {52 835, 2575}, {213657, 10413}, {235550, 11480},
{707491, 34481}, {1 375197, 67023}, {4553746, 221936}, {18414750, 897480},
{20301673, 989443}, {107509717, 5239703}, {118526025, 5776605},

, , ,
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Out[430]=

{479303659, 23 359831}, {1 587137793, 77352363}, {3085024639, 150354901},
{9 266090 225, 451601 605}, {10215568158, 497876328}, {41310414290, 2013346400},
{241180083879, 11754 398 061}, {265893329915, 12958847975},
{798629467678, 38922 818 648}, {3560478408139, 173527099849},
{18854900581 519, 918 931 626821}, {20786924940915, 1013092732575},
{22916920014 034, 1 116902340544}, {121359041951074, 5914677797816},
{541047213992 173, 26369 027743807}, {1625073666335915, 79201244337175},
{1 791591 749 822994, 87316839149904}, {10459741349140415, 509776601183125},
{42297818566 346853, 2061469539873927},
{46631992351 362425, 2272704245141645}, {140062495137574354,
6 826228330237664}, {272248730012590638, 13268591223208992},

{901508345253 952699, 43 936828344187559}, {3645581200412088225,
177674 756157894645}, {4019136693473448862, 195880736903465992},

{21283775406 627444718, 1037307742607533712}, {23464681763981726325,
1 143598614746747 895}, {94888087462270858711, 4624562415518882749},

{314206801656 955658142, 15313502511270644472},
{610744529635 869713506, 29765867062721040904},
{1 834414 495 264963422125, 89403892060302336895},
{2 022383 319 325212218577, 98564931999946459557},
{8 178252 201 184118248835, 398583623779632649775},
{47746593341 298636362466, 2327026573520417291544},
{52639092297 457656915335, 2565472382638603261325},
{158105245716 433219542457, 7705578187855453906637},
{704870451654 608722190866, 34353283807388815527856},
{3 732718 125 299524173485 026, 181921550024390859564584},
{4 115202 366 659372154676 335, 200562691335457121626725},
{4 536879 011 511214156388 371, 221113953516384880085311},
{24025536151 793618226387 871, 1170932985075215410628939},
{107111503111 871200945687342, 5220295242623060183163328},
{321716993576 973450818253335, 15679526869180246811552125},
{354682697412 696581096737611, 17286176966542883466932151},
{2 070722 460 247302890094 362210, 100920837575508382473521800},
{8 373729 330 505647117184 750062, 408110596127065735628789808},
{9 231768 808 124696268693 822725, 449928881491983415880282855},
{27728272128 209811936359 952451, 1351393294573312884296228591},
{53897275390 772899381086 550077, 2626792474557417748631330193},
{178472250537 165715507907634631, 8698205266023747353806950221},
{721718312180 732207620075796925, 35174398287138392151688815855},
{795671359757 236947160461831553, 38778649289366347388697218773},
{4 213564 207 970069775182 078955397, 205356554154407426041418290073},
{4 645319 796 098524994889 789331950, 226399033974047793666292086480},
{18785062398 716209733360 282487394, 915527922056834109203058904696},
{62203744780 648610649733 348944873, 3031625021755202337739947136893},
{120909530434 431052484619267618199, 5892769946990822074214206770691},

,
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Out[430]=

{363160346891 421612673565513231150, 17699352320792106590267494108480},
{400372669148 302081660118753864013, 19512969936088362396285746524383},
{1 619054 425 275115675454 252552848415, 78907884477953590546708432015925},
{9 452427 161 618730372363 793368237039, 460683111612224143919744498260251},
{10420998671 858564157899 870640312290, 507888398627609641616332773815000},
{31300208337 832572942686 165161569733, 1525478813498125180655016573860903},
{139543706396 316255014423209773045979,
6 800944114077542 671017063780868039},

{738968871392 325343777103414572630279,
36015 139099923106 526317236561959411},

{898169175983 773799358484229927301199,
43774 087191752960 285253670896082309}}}

This took less than a second on my laptop.  We observe that many of these are larger than the Nagell 
bound.  We can presume that many of the large solutions are later-generation solutions that would be 
given by the Pell recurrence from the fundamental solutions.  This is verified below.

Function to reduce set of solutions to representatives of distinct classes11.12.5 

The examples of the previous section show that the method of reduction yields many solutions that are 
not fundamental.  In fact, by construction, it only yields positive solutions, and by our convention 
fundamental solutions come in pairs with opposite signs of v, so the conjugates of the fundamental 
solutions won’t occur.  Besides this there are solutions that are in the second or later Pell generations.  
Let’s write a function to accept a list of solutions such as given by the method of reduction and return a 
list including just one member of each class drawn from the given solutions and their conjugates.  If the 
original list contains at least all the positive fundamental solutions, the result will be all and only the 
fundamental solutions, including conjugates.

Definition of fundamental solution used here is the member of a class for which u ≥ 0 is least, and 
conjugates are obtained by changing the sign of v.

The function is complicated somewhat by the desire to avoid needing to provide D as an argument.  D 
can be found from a pair of non-conjugate solutions.  For the set of solutions returned by solveuv-
ByReduction, the first two solutions are always non-conjugate, but in order to allow this function to 
work on any valid input list, we search for a non-conjugate pair of solutions to guarantee we can 
calculate D.

Outline of the function:

◼ Ensure u ≥ 0 for all solutions and augment list with conjugates by negating v.

◼ Sort into ascending order so that the fundamental solutions are first.  Delete duplicates such as any 
with v ⩵ 0 or if the list already contained conjugates.

◼ Find a pair of solutions that do not have the same 0v1 and use them to calculate D and f .  This 
function does not check that the remaining solutions have the same f  for that D.

◼ Initialize list uvclass of distinct class members to empty.
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◼ For each {u, v} in the list,

◼ If it is not in the same class as any element of uvclass, append it to uvclass.

◼ Return the list of distinct class members.  If the given list included only a pair of conjugate solutions, 
return the given list.  If the given list included only one solution, return that with its conjugate.

In[431]:= uvGetClasses[uvlist_] := Module{Df, D, f, uvall, uvclass},

uvall = Sort[DeleteDuplicates[Join[
Table[{Abs[uv[[1]]], uv[[2]]}, {uv, uvlist}],
Table[{Abs[uv[[1]]], -uv[[2]]}, {uv, uvlist}]]]];

Module{i, u, v, U, V}, (* finds a pair of givens that yield D,f *)

Df = {};
{u, v} = uvall[[1]];
i = 1;

WhileDf ⩵ {} && i < Length[uvall],

i = i + 1; {U, V} = uvall[[i]];

Ifv2 ≠ V2,

Df = 
u2 - U2

v2 - V2
, u2 - D v2;





;

If[Df ≠ {},
{D, f} = Df;
uvclass = {};
Do[
If[Position[Table[(* test each given in

uvall against growing set of class representatives *)

((u U - D v V) / f ∈ Integers && (v U - u V) / f ∈ Integers ) /.
{u → uv[[1]], v → uv[[2]], U → UV[[1]], V → UV[[2]]}, {UV, uvclass}]

, True] ⩵ {},
uvclass = Append[uvclass, uv]

]

, {uv, uvall}]; (* end Do *)

(* return *) uvclass
, (* else only given one solution
or a pair of conjugate solutions, can't find D,f *)

(* return *) uvall
]



Test the section that deals with a given set that cannot determine D.  The function still returns the list of 
class members.
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Test the section that deals with a given set that cannot determine D.  The function still returns the list of 
class members.

In[432]:= uvGetClasses[{{11, 1}}]

Out[432]= {{11, -1}, {11, 1}}

In[433]:= uvGetClasses[{{11, -1}, {11, 1}}]

Out[433]= {{11, -1}, {11, 1}}

In[434]:= uvGetClasses[{{7, 0}}]

Out[434]= {{7, 0}}

In[435]:= uvGetClasses[{{7, 0}, {11, 1}}]

Out[435]= {{7, 0}, {11, -1}, {11, 1}}

Examples11.12.6 

Example: p /q ⩵ 7 /18

This case has only 3 classes, the trivial solutions, but the reduction method generates several more.  
Here is the solution set obtained by the reduction method earlier:

In[436]:= uvsolnsbyreduction7o18

Out[436]= {{7, 0}, {11, 1}, {331, 39}}

Reduce this to representatives of each class.

In[437]:= uvclasssolns7o18 = uvGetClasses[uvsolnsbyreduction7o18]

Out[437]= {{7, 0}, {11, -1}, {11, 1}}

This matches the set of fundamental solutions found earlier.

In[438]:= uvfundsolns7o18

Out[438]= {{7, 0}, {11, -1}, {11, 1}}

In[439]:= {h7o18, k7o18} = solvePell[D7o18]

Out[439]= {17, 2}

If we run the Pell recurrence on these solutions we will see the other solutions appear.   The largest one 
is in the 5th generation.

odds-inversion.nb     111



In[440]:= Sort[Flatten[Table[RecurrenceTable[{
u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]} /. {D → D7o18, h → h7o18, k → k7o18},

{u, v}, {i, 5}],
{uv, uvfundsolns7o18}], 1]]

Out[440]= {{7, 0}, {11, -1}, {11, 1}, {43, 5}, {119, 14}, {331, 39}, {1451, 171},
{4039, 476}, {11 243, 1325}, {49291, 5809}, {137207, 16170}, {381931, 45011},
{1674443, 197335}, {4660999, 549304}, {12974411, 1529049}}

Example: p /q ⩵ 6 /17

This example, worked earlier, has 9 classes.

In[441]:= uvsolnsbyreduction6o17

Out[441]= {{6, 0}, {11, 1}, {74, 8}, {249, 27}, {839, 91}, {6131, 665},
{20661, 2241}, {69626, 7552}, {508799, 55187}, {5778119, 626725}}

In[442]:= uvclasssolns6o17 = uvGetClasses[uvsolnsbyreduction6o17]

Out[442]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}

This agrees with the list of fundamental solutions found earlier, supporting the claim that the method 
of reduction is complete.

In[443]:= uvfundsolns6o17

Out[443]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}

In[444]:= uvclasssolns6o17 ⩵ uvfundsolns6o17

Out[444]= True

This one only requires 2 Pell generations to obtain all the solutions produced by the reduction method.
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In[445]:= Sort[Flatten[Table[RecurrenceTable[{
u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]} /. {D → D6o17, h → h6o17, k → k6o17},

{u, v}, {i, 2}],
{uv, uvclasssolns6o17}], 1]]

Out[445]= {{6, 0}, {11, -1}, {11, 1}, {74, -8}, {74, 8}, {249, -27},
{249, 27}, {839, -91}, {839, 91}, {6131, 665}, {20661, 2241},
{69626, 7552}, {508799, 55187}, {1714614, 185976}, {5778119, 626725},
{42224186, 4579 856}, {142292301, 15433767}, {479514251, 52010623}}

It is interesting to see how the solutions map from one generation to the next.  Get the u, v solutions 
grouped by generation rather than sorted by size.

In[446]:= uv2gens6o17 = Table[RecurrenceTable[{
u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]} /. {D → D6o17, h → h6o17, k → k6o17},

{u, v}, {i, 2}],
{uv, uvclasssolns6o17}];

In[447]:= TableForm[uv2gens6o17, TableDepth → 1]
Out[447]//TableForm=

{{6, 0}, {1714614, 185976}}
{{11, -1}, {508799, 55187}}
{{11, 1}, {5778119, 626725}}
{{74, -8}, {69 626, 7552}}
{{74, 8}, {42 224186, 4579856}}
{{249, -27}, {20661, 2241}}
{{249, 27}, {142 292 301, 15 433767}}
{{839, -91}, {6131, 665}}
{{839, 91}, {479 514 251, 52 010623}}

Each row has 2 generations of one class.  Now convert these to x, y.
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In[448]:= TableForm[Table[xyfromuv /@ uv /. {p → 6, q → 17}, {uv, uv2gens6o17}], TableDepth → 1]
Out[448]//TableForm=

{0, 0},  392364
5

, 1322244
5



{1, 0},  116429
5

, 392364
5



{0, 1},  1322244
5

, 4455869
5



 54
5
, 14

5
, {3186, 10738}

 14
5
, 54

5
, {1932490, 6512 346}

 189
5
, 54

5
, {945, 3186}

 54
5
, 189

5
, {6512346, 21 946113}

 644
5
, 189

5
, {280, 945}

 189
5
, 644

5
, {21946113, 73 956736}

Each row has 2 generations of one class.  Classes 1-3 (the trivial solution classes) are integer in the 1st 
generation but fractional in the second.  Classes 4-9 are fractional in the 1st generation but integer in 
the second.  Classes 1-3 form recycling triplets as always.  Classes 4, 6, and 8 form another triplet, and 
classes 5, 7, and 9 a third triplet.

Example: p /q ⩵ 8 /19

This example has two classes of solutions that yield no admissible solutions.

In[449]:= D8o19 = q (q - 2 p) /. {p → 8, q → 19}

Out[449]= 57

In[450]:= {h8o19, k8o19} = solvePell[D8o19]

Out[450]= {151, 20}

In[451]:= uvclasssolns8o19 = uvGetClasses[solveuvByReduction[8 / 19]]

Out[451]= {{8, 0}, {11, -1}, {11, 1}, {46, -6}, {46, 6}}

There are 5 classes.  Obtain the first 4 Pell generations.

114     odds-inversion.nb



In[452]:= uv4gens8o19 = Table[RecurrenceTable[{
u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]} /. {D → D8o19, h → h8o19, k → k8o19},

{u, v}, {i, 4}],
{uv, uvclasssolns8o19}]; TableForm[uv4gens8o19, TableDepth → 1]

Out[452]//TableForm=

{{8, 0}, {1208, 160}, {364808, 48320}, {110170808, 14592480}}
{{11, -1}, {521, 69}, {157331, 20839}, {47513441, 6293309}}
{{11, 1}, {2801, 371}, {845 891, 112041}, {255456281, 33836011}}
{{46, -6}, {106, 14}, {31966, 4234}, {9653626, 1278654}}
{{46, 6}, {13 786, 1826}, {4 163326, 551446}, {1257310666, 166534866}}

Each row has 4 generations of one class.  Convert to (x, y).

In[453]:= TableForm[Table[xyfromuv /@ uv /. {p → 8, q → 19}, {uv, uv4gens8o19}], TableDepth → 1]
Out[453]//TableForm=

{{0, 0}, {120, 280}, {36640, 84960}, {11065560, 25658040}}
{{1, 0}, {51, 120}, {15801, 36640}, {4772251, 11065560}}
{{0, 1}, {280, 651}, {84960, 197001}, {25658040, 59494051}}

 28
3
, 10

3
,  28

3
, 70

3
,  9628

3
, 22330

3
,  2 908 828

3
, 6744790

3


 10
3
, 28

3
,  4150

3
, 9628

3
,  1 254 490

3
, 2908828

3
,  378 853 030

3
, 878457628

3


No integer solutions appear for the 4th and 5th classes.  So although this example has 5 classes, only 3 
of them give rise to admissible solutions of Equation (2).  The proof in Section 12.2 only shows the 
existence of integer solutions if the starting solutions in the Pell recurrence are integer, whereas here 
the fundamental solutions are fractional.  The example 6 /17 above shows that fractional solutions can 
be followed by integer solutions in the next generation, but that does not happen here.  The proof in 
Section 12.2 implies that if two successive generations are fractional, all are fractional, so the 4th and 
5th classes yield no admissible solutions.

Example: p /q ⩵ 9 /22

The reverse search found a recycling doublet  for the smallest admissible (x, y) solutions, namely (3, 9) 
and (9, 24).  It is not part of a triplet.

In[454]:= recycleSolutions[{{3, 9}, {9, 24}}]
Out[454]//TableForm=

x y
3 9
9 24

Let’s work it out using classes and Pell generations.

In[455]:= D9o22 = q (q - 2 p) /. {p → 9, q → 22}

Out[455]= 88
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In[456]:= {h9o22, k9o22} = solvePell[D9o22]

Out[456]= {197, 21}

In[457]:= uvclasssolns9o22 = uvGetClasses[solveuvByReduction[9 / 22]]

Out[457]= {{9, 0}, {13, -1}, {13, 1}, {57, -6}, {57, 6}}

There are 5 classes.  Obtain the first 3 Pell generations.

In[458]:= uv3gens9o22 = Table[RecurrenceTable[{
u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]} /. {D → D9o22, h → h9o22, k → k9o22},

{u, v}, {i, 3}],
{uv, uvclasssolns9o22}]; TableForm[uv3gens9o22, TableDepth → 1]

Out[458]//TableForm=

{{9, 0}, {1773, 189}, {698553, 74466}}
{{13, -1}, {713, 76}, {280909, 29945}}
{{13, 1}, {4409, 470}, {1737133, 185179}}
{{57, -6}, {141, 15}, {55497, 5916}}
{{57, 6}, {22 317, 2379}, {8 792841, 937320}}

Each row has 3 generations of one class.  Convert to (x, y).

In[459]:= TableForm[Table[xyfromuv /@ uv /. {p → 9, q → 22}, {uv, uv3gens9o22}], TableDepth → 1]
Out[459]//TableForm=

{{0, 0}, {126, 315}, {50085, 124551}}
{{1, 0}, {50, 126}, {20140, 50085}}
{{0, 1}, {315, 785}, {124551, 309730}}
{{9, 3}, {9, 24}, {3978, 9894}}
{{3, 9}, {1599, 3978}, {630 444, 1567764}}

All solutions are integer.  As always, the trivial solutions give rise to a triplet in each generation.  But 
interestingly, the doublets cross generations: the first doublet (with x < y) is generation 1 of class 5 with 
generation 2 of class 4.

Example: p /q ⩵ 210 /421

Now apply this to an example that has a large number of classes.
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In[460]:= uvclasssolns210o421 = uvGetClasses[uvsolnsbyreduction210o421]

Out[460]= {{210, 0}, {211, -1}, {211, 1}, {631, -29}, {631, 29}, {2737, -133},
{2737, 133}, {8210, -400}, {8210, 400}, {9051, -441}, {9051, 441},
{52835, -2575}, {52 835, 2575}, {213657, -10413}, {213657, 10413},
{235550, -11480}, {235550, 11480}, {707491, -34481}, {707491, 34481},
{1375197, -67023}, {1375 197, 67023}, {4553746, -221936}, {4553746, 221936},
{18414750, -897 480}, {18 414750, 897480}, {20301673, -989443},
{20301673, 989443}, {107509717, -5239703}, {107509717, 5239703},
{118526025, -5 776605}, {118526025, 5776605}, {479303659, -23359831},
{479303659, 23 359831}, {1 587137793, -77352363}, {1587137793, 77352363},
{3085024 639, -150354901}, {3085024639, 150354901}, {9266090225, -451601605},
{9266090 225, 451601 605}, {10215568158, -497876328}, {10215568158, 497876328},
{41310414 290, -2013346400}, {41310414290, 2013346400},
{241180083879, -11754398061}, {241180083879, 11754398061},
{265893329915, -12958847975}, {265893329915, 12958847975},
{798629467678, -38922818648}, {798629467678, 38922818648},
{3560478 408139, -173527099 849}, {3560478408139, 173527099849},
{18854900 581 519, -918931626821}, {18854900581519, 918931626821},
{20786924 940 915, -1 013092 732575}, {20786924940915, 1013092732575},
{22916920 014 034, -1 116902 340544}, {22916920014034, 1116902340544},
{121359041951 074, -5914677 797816}, {121359041951074, 5914677797816},
{541047213992 173, -26369027743807}, {541047213992173, 26369027743807},
{1625073 666335915, -79201 244337175}, {1625073666335915, 79201244337175},
{1791591 749822994, -87316 839149904}, {1791591749822994, 87316839149904},
{10459741 349 140415, -509776601183125}, {10459741349140415, 509776601183125},
{42297818 566 346853, -2061 469539873927},
{42297818 566 346853, 2061469539873927},
{46631992 351 362425, -2272 704245141645},
{46631992 351 362425, 2272704245141645},
{140062495137 574354, -6826 228330237664},
{140062495137 574354, 6826228330237664},
{272248730012 590638, -13 268591223208992},
{272248730012 590638, 13268591223208992},
{901508345253 952699, -43 936828344187559},
{901508345253 952699, 43936828344187559},
{3645581 200412088225, -177 674756157894645},
{3645581 200412088225, 177674756157894645},
{4019136 693473448862, -195 880736903465992},
{4019136 693473448862, 195880736903465992}}

In[461]:= Length[uvclasssolns210o421]

Out[461]= 81

Assuming completeness, this is the number of classes for this example.  Verify that all are within the 
Nagell bound.
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Assuming completeness, this is the number of classes for this example.  Verify that all are within the 
Nagell bound.

In[462]:= vboundNagell210o421 = vboundNagell[210 / 421]

Out[462]= 450764467341464 849

We can see that this bound is larger than the v in the last solution, but let’s verify.

In[463]:= DeleteDuplicates[
Table[Abs[uv[[2]]] ≤ vboundNagell210o421, {uv, uvclasssolns210o421}]]

Out[463]= {True}

In fact the last few solutions are a significant fraction of the Nagell bound.  They are out of reach of a 
direct search.

In[464]:= DeleteDuplicates[
Table[N[Abs[uv[[2]]] / vboundNagell210o421], {uv, uvclasssolns210o421}]]

Out[464]= 0., 2.21845 × 10-18, 6.43352 × 10-17, 2.95054 × 10-16, 8.87381 × 10-16,

9.78338 × 10-16, 5.71252 × 10-15, 2.31008 × 10-14, 2.54678 × 10-14, 7.64945 × 10-14,
1.48687 × 10-13, 4.92355 × 10-13, 1.99102 × 10-12, 2.19503 × 10-12, 1.1624 × 10-11,
1.28151 × 10-11, 5.18227 × 10-11, 1.71603 × 10-10, 3.33555 × 10-10, 1.00186 × 10-9,
1.10452 × 10-9, 4.46652 × 10-9, 2.60766 × 10-8, 2.87486 × 10-8, 8.63485 × 10-8,
3.84962 × 10-7, 2.03861 × 10-6, 2.2475 × 10-6, 2.4778 × 10-6, 0.0000131214,
0.0000584985, 0.000175704, 0.000193708, 0.00113092, 0.00457327,
0.00504189, 0.0151437, 0.0294358, 0.0974718, 0.394163, 0.434552

The fact that these range up to close to the Nagell bound suggests that all classes have been found.  
Running the Pell recurrence on the set of class representatives would generate the other solutions 
found by the reduction method, but we will skip that for reasons of space.

Function to solve hyperbolic case for (x, y) by reduction method11.12.7 

The final task  is to convert the solutions (u, v) found by the reduction method to (x, y).  To avoid the 
arbitrariness of the solution set found by the method of reduction, which includes various Pell genera-
tions, we will convert that set into the set of class representatives, and then apply any desired number 
of Pell recurrence steps to generate additional solutions.  These are then converted to (x, y) and sifted 
to obtain admissible solutions.  This function uses functions solvePell, solveuvByReduction, 
and uvGetClasses.

The function has a mandatory argument z ⩵ p /q (0 < z < 1 /2 and giving nonsquare D), an optional 
iters which is the number of Pell generations to use (default 3), and optional tableform to specify 
whether to print the results in tabular form vs. a list.

Outline of the function:

◼ Obtain {h, k} the base solution of the Pell equation for this D.

◼ Obtain a set of solutions {u, v} of Equation (11) using solveuvByReduction.
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◼ Convert the set of solutions into a minimal set of representatives of each class using 
uvGetClasses.  (Assuming the method of reduction is complete, these are all the classes for the 
instance.  The solution method always finds the fundamental solutions as well as others so the result 
is the set of fundamental solutions.)

◼ Run the Pell recurrence to produce additional generations as specified by iters.

◼ Convert the set of {u, v} solutions to {x, y}.

◼ Sift the {x, y} solution set to retain only admissible solutions, i.e. integer and positive.  Sort so that 
x ≤ y and then sort solutions into ascending order, deleting duplicates.  Duplicates always appear in 
the first generation because the conjugate pairs yield {x, y} pairs that differ only in order.

In[465]:= solveHyperbolicByReduction[z_, iters_: 3, tableform_: True] :=

Module{p, q, D, hkpell, h, k, uvsolns, xysolns},

p = Numerator[z];
q = Denominator[z];
D = q (q - 2 p);
hkpell = solvePell[D]; (* get the base solution *)

IfLength[hkpell] ⩵ 2,

{h, k} = hkpell;
uvsolns = uvGetClasses[Evaluate[solveuvByReduction[z]]];
uvsolns = Flatten[Table[RecurrenceTable[{

u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]},

{u, v}, {i, iters}],
{uv, uvsolns}]

, 1]; (* Flatten to produce list of {u,v} pairs *)

xysolns = Table
1

2


p - u

2 p - q
- v ,

p - u

2 p - q
+ v  /. {u → uv[[1]], v → uv[[2]]},

{uv, uvsolns};

xysolns = DeleteDuplicates[
Sort[Cases[Sort /@ xysolns, {_Integer?Positive, _Integer?Positive}]]];

If[tableform,
TableForm[xysolns, TableHeadings → {None, {"x", "y"}}],
xysolns]





Exercise the test for valid z.

Elliptical ratio.
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In[466]:= solveHyperbolicByReduction[4 / 7]

D=-7 not OK

Square D.

In[467]:= solveHyperbolicByReduction[4 / 9]

D=9 not OK

Examples11.12.8 

Example: p /q ⩵ 7 /18

In[468]:= solveHyperbolicByReduction[7 / 18]
Out[468]//TableForm=

x y
2 7
7 21
21 60
95 266
266 742
742 2067

There are 3 classes, and the solver ran 3 generations of the Pell recurrence.  Solutions are integer in 
each generation.  However, the first generation is just the 3 trivial solutions, removed by the sift at the 
end, resulting in 6 solutions.

Example: p /q ⩵ 4 /11

This example has 3 classes, but only every other generation yields admissible solutions.  So using 3 
generations we get just one triplet, the third generation.

In[469]:= solveHyperbolicByReduction[4 / 11]
Out[469]//TableForm=

x y
105 336
336 1072
1072 3417

Example: p /q ⩵ 3 /43

An extreme case of a ratio involving small p and q but whose smallest solution is very large.  I found this 
example by looking for the ratio with q ≤ 50 having the largest bound on v but only the trivial solution 
classes, so that the Pell recurrence would generate a large triplet as the smallest admissible solutions.  
It turns out the second generation are also not admissible, so the solutions finally appear in the third 
generation and are even bigger.
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In[470]:= solveHyperbolicByReduction[3 / 43]
Out[470]//TableForm=

x y
29356663716856 580847741762556 781741938418732926066926219805
781741938418732 926 066926219805 20817095027449354780936957432245
20817095027449 354780936957432245 554340792126897394565585271973396

Use scientific notation to see how big these are.

In[471]:= % // N

Out[471]= 2.93567 × 1028, 7.81742 × 1029,

7.81742 × 1029, 2.08171 × 1031, 2.08171 × 1031, 5.54341 × 1032

Example: p /q ⩵ 6 /17

In[472]:= solveHyperbolicByReduction[6 / 17]
Out[472]//TableForm=

x y
280 945
945 3186
3186 10738
1 932490 6512346
6 512346 21946113
21946113 73956736
13309062481 44850530088
44850530088 151142881176
151142881176 509340034225

This example has 9 classes.  If one views the x, y values before sifting one finds that the first generation 
consists of the 3 trivial solutions, and fractional solutions for the other classes, so no admissible solu-
tions.  The second generation yields fractional values from the trivial solutions, and integer solutions 
for the rest, giving 6 admissible solutions, all distinct.  The third generation gives admissible values 
from the trivial solutions, but fractional values from the others, giving the last 3 admissible solutions.  
The pattern continues to further generations, adding 6 solutions in the even-numbered generations 
and 3 solutions in the odd-numbered ones.  Observe that there are three triplets of solutions related by 
the recycling recurrence.  In the table, the first two triplets come from the six non-trivial classes in the 
second generation, and the last triplet from the trivial solutions in the third generation.

Example: p /q ⩵ 210 /421

Now let’s see the results for the challenging 210 /421 case.  It generates a lot of solutions, so let’s 
proceed cautiously.  First generate the list for 3 Pell cycles, but don’t print.

In[473]:= xysolnsbyreduction210o421 = solveHyperbolicByReduction[210 / 421, 3, False];

In[474]:= Length[xysolnsbyreduction210o421]

Out[474]= 201
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Recall that there are 81 classes for this example. The number of solutions we obtained is

In[475]:=
(81 - 3)

2
+ 2 × 81

Out[475]= 201

This number results as follows.  The first 3 classes are the trivial solutions, which are suppressed.  The 
rest of the first generation yield integer solutions, but since negative v values yield the same solutions 
as  positive except with x and y swapped, these non-distinct solutions are suppressed.  So the total of 
distinct admissible solutions for the first generation is (81 - 3) /2 ⩵ 39.  Then each of the next genera-
tions yields a complete set of 81 distinct admissible solutions.  (In the second and later generations, the 
initial solutions with negative v values give rise to solutions with positive v.)

Make a table of just the first 50 solutions, representing 39 from the the first generation and 11 from the 
second.

In[476]:= TableForm[xysolnsbyreduction210o421[[1 ;; 50]], TableHeadings → {None, {"x", "y"}}]
Out[476]//TableForm=

x y
196 225
1197 1330
3800 4200
4200 4641
25025 27600
101517 111930
111930 123410
336400 370881
653982 721005
2 165800 2387736
8 758530 9656010
9 656010 10645453
51134902 56374605
56374605 62151210
227971809 251331640
754892610 832244973
1 467334764 1617689665
4 407244205 4858845810
4 858845810 5356722138
19648533840 21661880240
114712842804 126467240865
126467240865 139426088840
379853324410 418776143058
1 693475654 040 1867002753889
8 967984477 244 9886916104065
9 886916104 065 10900008836640
10900008836640 12016911177184
57722182076524 63636859874340
257339093124078 283708120867885
772936210999265 852137455336440
852137455336440 939454294486344
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4 974982373 978 540 5484758975161665
20118174513236 358 22179644053110285
22179644053110 285 24452348298251930
66618133403668 240 73444361733905904
129490069394690 718 142758660617899710
428785758454882 465 472722586799070024
1 733953222 127 096685 1911627978284991330
1 911627978 284 991330 2107508715188457322
10123233832009 955398 11160541574617489110
11160541574617 489110 12304140189364237005
45131762523375 987876 49756324938894870625
149446649572842 506 730 164760152084113151202
290489331286574 336 196 320255198349295377100
872505301602330 542 510 961909193662632879405
961909193662632 879 405 1060474125662579338962
3 889834288 702 242799425 4288417912481875449200
22709783383889 109535356 25036809957409526826900
25036809957409 526826900 27602282340048130088225
75199833764288 882817805 82905411952144336724442

Verify that these all yield the desired probability.

In[477]:= DeleteDuplicates[probdifferent /@ xysolnsbyreduction210o421]

Out[477]= 
210

421


Method of solution by recursive reduction of RHS11.13  
Hua, Section 11.5, presents a method of solving Equation (11) by recursively reducing the RHS until it 
comes into the range for which a solution (if any exists) is guaranteed to be found among the conver-

gents of D .  I provide it here as an alternative to the method of reduction, because for p less than 
about 100, it is significantly faster.  Although both methods take less than one second on most cases 
with small p, if one wants to solve a large set of cases, say to test a hypothesis (as I did numerous 
times), the savings in compute time can be significant.  For large p, this method becomes the slower of 
the two, at least as implemented here.

We start with Equation (11):

u2 - D v2 ⩵ f

If 0f1 < D , then the equation can be solved by using the method of continued fractions.  If this inequal-
ity is not satisfied, then we proceed as follows.

The method requires seeking integers l, h satisfying

h ⩵
l2 - D

f

This requires that l2 - D ≡ 0 (mod f ), which can be solved by searching.  Observe that this is the same 
congruence as Equation (31) with l taking the place of s.  However, in this method, it is required that 
0l1 < 0f1/2.
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This requires that l2 - D ≡ 0 (mod f ), which can be solved by searching.  Observe that this is the same 
congruence as Equation (31) with l taking the place of s.  However, in this method, it is required that 
0l1 < 0f1/2.

Hua recasts the congruence in the form

l2 ⩵ D + f h

It suffices to search for perfect squares using the range -hmax < h < hmax where

hmax ⩵ Max
f

4
,

D

f

Since f ≥ D  it is guaranteed that hmax < 0f1.  Then solve

u2 - D v2 ⩵ h

If 0h1 < D  solve directly using continued fractions; otherwise repeat recursively.  Since h is reduced 
on each step, the recursion is guaranteed to terminate.  Once one has a solution

x2 - D y2 ⩵ h

then solutions to u2 - D v2 ⩵ f  are given by

u ⩵
D y ± l x

h
, v ⩵

x ± l y

h

The same sign must be used for each.  Proof that this works:

In[478]:= Simplifyu2 - D v2 /. u →
D y + l x

h
, v →

x + l y

h


Out[478]=
-D + l2 x2 - D y2

h2

In[479]:= Simplifyu2 - D v2 /. u →
D y - l x

h
, v →

x - l y

h


Out[479]=
-D + l2 x2 - D y2

h2

Use the fact that x, y are solutions with RHS h, and that l was picked to satisfy the congruence:

In[480]:= Simplify% /. l2 → D + f h

Out[480]=
f x2 - D y2

h

In[481]:= Simplify% /. h -> x2 - D y2

Out[481]= f

It is not guaranteed that u, v will be integer.  However, non-integer results obtained deeper within the 
recurrence may yield integer solutions when the recurrence is unwound.

For each stage of the recursive process, more than one l, h pair may be found satisfying the congru-
ence, and all of them may lead to solutions.

It is worth noting that for our problem, in the first stage of the recursion there is always a solution to 
the congruence l ⩵ q - p, h ⩵ 1.
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It is worth noting that for our problem, in the first stage of the recursion there is always a solution to 
the congruence l ⩵ q - p, h ⩵ 1.

l2 ⩵ D + f h ⩵ q (q - 2 p) + p2 h ⩵ q2 - 2 q p + p2 + (h - 1) p2 ⩵ (q - p)2 + (h - 1) p

This yields the Pell equation to solve.  However, if q is large, it may not be in the range of l less than f /2, 
so it may not be used.  There may be other solutions to the congruence as well.

Example: p /q = 5 /11 solved manually by method of recursive reduction11.13.1 

This section can be skipped, unless you are interested in the gory details.

This example was chosen more or less at random as a ratio with a fairly small numerator, that yields 
small solutions.  Here is what the Pell equation method gives.

In[482]:= solveHyperbolicByPell[5 / 11]
Out[482]//TableForm=

x y
15 30

In this example, p is prime, so we have no sub-equations that can be obtained by dividing Equation (11) 
by the squares of nontrivial divisors of p.  In general those need to be solved as well to obtain all solu-
tions.  The only sub-equation here is the Pell equation, which gives the solution shown above.  Here we 
look for additional solutions that are not obtained from the Pell equation.

In[483]:= D5o11 = q (q - 2 p) /. {p → 5, q → 11}

Out[483]= 11

In[484]:= f5o11 = p2 /. p → 5

Out[484]= 25

Determine the maximum value of the RHS for which any solution must be given by a convergent.

In[485]:= fmax5o11 = Floor D5o11 

Out[485]= 3

The equation being solved is

In[486]:= u2 - D5o11 v2 ⩵ f5o11

Out[486]= u2 - 11 v2 ⩵ 25

We will need a table of values of u2 - D v2 for u /v the convergents of D .

In[487]:= cv5o11 = Convergents D5o11 

Out[487]= 3,
10

3
, 11 

In[488]:= Length[cv5o11] - 1

Out[488]= 2
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This is even.  Get just the first cycle of convergents.

In[489]:= cv5o11 = Convergents D5o11 , 2

Out[489]= 3,
10

3


In[490]:= TableForm

Table

u, v, u2 - D5o11 v2 /. {u → Numerator[cv5o11[[i]]], v → Denominator[cv5o11[[i]]]},

{i, Length[cv5o11]},

TableHeadings → {None, {"u", "v", "f"}}
Out[490]//TableForm=

u v f
3 1 -2
10 3 1

Now seek to reduce the RHS of the equation.  Determine the range of h values that need to be scanned 
for satisfying the congruence:

In[491]:= hmax5o11 = Floor[Max[Abs[f5o11] / 4, D5o11 / Abs[f5o11]]]

Out[491]= 6

Find the values that work.  Note need to offset position values that start at 1 so that h values start at 
-hmax.

In[492]:= hvalues5o11 = FlattenPosition

Table D5o11 + f5o11 h , {h, -hmax5o11, hmax5o11}, _Integer, {1} - hmax5o11 - 1

Out[492]= {1}

Find the corresponding l value:

In[493]:= lvalues5o11 = D5o11 + f5o11 hvalues5o11

Out[493]= {6}

The solution h → 1, l → 6 can be solved right away since h < 6.  Since this is the Pell equation, the solu-
tion is at the end of the convergents table above, u ⩵ 10, v ⩵ 3.

In[494]:= u2 - D5o11 v2 ⩵ 1 /. {u → 10, v → 3}

Out[494]= True

Unwind to the top-level equation

In[495]:= {u → (D5o11 v0 + l u0) / h, v → (u0 + l v0) / h} /. {u0 → 10, v0 → 3, h → 1, l → 6}

Out[495]= {u → 93, v → 28}

Verify:
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In[496]:= u2 - D5o11 v2 ⩵ f5o11 /. {u → 93, v → 28}

Out[496]= True

There is also a solution for the other sign on l

In[497]:= {u → (D5o11 v0 - l u0) / h, v → (u0 - l v0) / h} /. {u0 → 10, v0 → 3, h → 1, l → 6}

Out[497]= {u → -27, v → -8}

These are negative but the absolute values satisfy the equation too:

In[498]:= u2 - D5o11 v2 ⩵ f5o11 /. {u → 27, v → 8}

Out[498]= True

Convert (u, v) to (x, y)

In[499]:= xyfromuv[{93, 28}] /. {p → 5, q → 11}

Out[499]= {30, 58}

In[500]:= xyfromuv[{27, 8}] /. {p → 5, q → 11}

Out[500]= {7, 15}

Verify:

In[501]:= probdifferent[{30, 58}]

Out[501]=
5

11

In[502]:= probdifferent[{7, 15}]

Out[502]=
5

11

In sum, then, the method yielded the following solutions
x y
7 15
30 58

The Pell equation solution (15, 30) was found at the start of this section.  It is the middle member of a 
recycling triplet that these two solutions belong to.

Putting the method of recursive reduction into a function11.13.2 

First we define a function to find the solutions (u, v) using recursive reduction.  That function is called 
by a function that uses those solutions to get (x, y) values satisfying the original problem, and includes 
an optional parameter n for steps of recurrence to run.  If n ⩵ 1 the solution of the Pell equation (used 
only for the recurrence) is skipped.

As was done above for solving the reduced equation (method given by Alpern, Section 11.12), it is 
necessary to also solve  Equation (11) divided by the square divisors of f , in order to find all solutions.

The recursive reduction routine includes a stanza that checks whether the RHS of the equation being 

solved is a perfect square, and if so includes the trivial solution  f , 0.  This is not necessary, but if it is 

not included, then minimal members of some classes are not found.  In order to produce the same 
result from uvGetClasses as solveuvByReduction without running the Pell recurrence in 
reverse, this step is included.  It does not have a large impact on running time.  (I tried simply joining 
the three trivial solutions to the output of the function before feeding to uvGetClasses.  This yields 
the minimal class members in many cases but not all.)
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The recursive reduction routine includes a stanza that checks whether the RHS of the equation being 

solved is a perfect square, and if so includes the trivial solution  f , 0.  This is not necessary, but if it is 

not included, then minimal members of some classes are not found.  In order to produce the same 
result from uvGetClasses as solveuvByReduction without running the Pell recurrence in 
reverse, this step is included.  It does not have a large impact on running time.  (I tried simply joining 
the three trivial solutions to the output of the function before feeding to uvGetClasses.  This yields 
the minimal class members in many cases but not all.)

Either sign of u, v satisfies Equation (11).  The method seeks only positive values.  For the hyperbolic 
case, negative u values do not yield admissible x, y.  Only positive values of v are used, so that only 
distinct solutions with x < y are generated.  The admissibility tests on (x, y) use Positive as the 
criterion to exclude the trivial solutions; replacing that by NonNegative would include them.

The following function implements the recursion to find (u, v) solutions.  It is meant to be called by the 
next function, a driver that collects all the solutions for Equation (11) and the sub-equations obtained 
dividing by square divisors of f .  Finally, there is a function to take these solutions, run the Pell recur-
rence to find as many solutions as desired, and convert to (x, y). 

Note: above, the congruence to be solved, l2 - D ⩵ 0 (mod f ), was recast as l2 ⩵ D + h f , and solutions 
were searched for by h.  This turns out to be less efficient in Mathematica than searching by l, because 
search by h requires taking square roots, whereas search by l involves only the modulus operation.  If 
f ⩵±1 the only solution is l ⩵ 0.  However, this case is never encountered, since the condition 0f1 < D 
always holds, so the recursion is not done.  Thus the search bounds are 0 < l < f /2.

This function does not call any functions that are not built-in to Mathematica.  The arguments are D 
and f .   The function does not check them for validity, since it is assumed it will only be called by the 
driver routine, which ensures that D > 0 and non-square.  Note that although in Equation (11) f ⩵ p2 is 
always positive, during the recursion, f  may be positive or negative.  This function does not sift the 
solutions for integer values, since fractional solutions produced at lower levels of the recursion may 
become integer at higher levels.  The driver routine tests the final solutions for admissibility.

Outline of function:

◼ If f < D , terminal case:

◼ Calculate convergents of D .  If repeat length is odd, use two cycles.

◼ Search the list convergents for u /v such that u2 - D v2 ⩵ f .

◼ Also, if f  is a square, include the solution f , 0 .  Return list of (u, v) pairs as result.

◼ Otherwise, recursive reduction of RHS:

◼ Find l values satisfying the congruence l2 - D ≡ 0 (mod f ).

◼ For each l, calculate h ⩵ l2 - D f  and call self, replacing f  by h.  It is guaranteed that h < f so the 
recursion will terminate.
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◼ Convert the (x, y) pairs satisfying x2 - D y2 ⩵ h into (u, v) pairs satisfying u2 - D v2 ⩵ f  using 
u ⩵ (D y + δ l x)h, v ⩵ (x + δ l y)h where δ ⩵ ±1.  Return the list of (u, v) as result.

A few economizations would be possible to speed up the terminal case.  Since the convergents used 

are always those of D , they could be calculated once at the outset and re-used each time the termi-
nal case is reached.  Also, not infrequently the same value of f  appears at different stages of the calcula-
tion.  For instance, f ⩵ 1 will be encountered when the routine is called by the driver for the divisor 
d ⩵ p, but not infrequently the recursive reduction step also reduces the RHS to 1.  The solutions of 
u2 - D v2 ⩵ f  for a given f  could be cached and re-used when that value is encountered again.  Finally, 
when f = ±1, the solution is always found in a known location among the convergents, so searching 
them all is not necessary.  These economizations are not done, since they would mainly improve the 
already speedy solution for small p, and don’t help much for large p, when solving the congruence 
(time proportional to p2) is dominant.

Caching of solutions of the congruence for a given 0f1 could be used as well to speed up the recursive 
step, which would be helpful when p is large.  Unfortunately this would not help as much as one would 
hope, since the recurring values of f  are the small ones, and the initial value f ⩵ p2, which takes the 
longest, only occurs once, at the top level.

In[503]:= solveRecursiveReduction[D_, f_] := Module

{l, h, lvalues, hvalues, contfrac, repeat, replen,
convergents, rruvvalues, uvvalues, uvlist, r, s, unextgen, wnextgen},

Iff2 < D, (* solution by convergents is guaranteed *)

contfrac = ContinuedFraction D ;

(* List is of form {a0, a1, ... an,{b0, b1, ... bm}} *)

repeat = contfrac[[-1]]; (* extract the repeat cycle at end *)

replen = Length[repeat];
If[Mod[replen, 2] ⩵ 0,
convergents = Convergents[Flatten[contfrac][[ ;; replen]]], (* even replen *)

convergents =

Convergents[Join[Flatten[contfrac], repeat][[ ;; 2 replen]]] (* odd *)

];
(* turn convergent fractions into {u,v} values *)

uvvalues = Transpose[{Numerator /@ convergents, Denominator /@ convergents}];
(* find {u,v} values satisfying the equation *)

uvvalues = Selectuvvalues, u2 - D v2 ⩵ f /. {u → #[[1]], v → #[[2]]} &;

(* If f is square, include the trivial solution u⩵ f ,v=0 *)

If f ∈ Integers,

uvvalues = Appenduvvalues,  f , 0;

;

uvvalues (* return result *)

,
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In[503]:=

uvvalues (* return result *)

, (* else f ≥ D *)

(* recursive reduction of RHS. Seek l, h satisfying l2⩵D+f h *)

lvalues =

FlattenPositionTableModl2 - D, f ⩵ 0, {l, Ceiling[f / 2 - 1]}, True;

hvalues = Tablel2 - D  f, {l, lvalues};

uvlist = {};
Do[(* solve with reduced RHS for each l,h pair *)

l = lvalues[[j]]; h = hvalues[[j]];
rruvvalues = solveRecursiveReduction[D, h];
uvvalues = Flatten[Table[{(D v + δ l u) / h, (u + δ l v) / h} /.

{u → rruvvalues[[i]][[1]], v → rruvvalues[[i]][[2]]},
{δ, {-1, 1}}, {i, Length[rruvvalues]}], 1];

(* Sign of u, v can be either, so take absolute
value. Remove duplicates to fend off combinatorial explosion. *)

uvlist = Sort[DeleteDuplicates[Abs[Join[uvvalues, uvlist]]]]
, {j, Length[hvalues]} (* Do control *)

];
uvlist (* return result *)





Next is the top-level driver of the recursive routine.

This function does not call any functions that are not built-in to Mathematica, except solveRecur-
siveReduction.

Outline of function:

◼ Calculate D and ensure that it is positive and nonsquare.  Calculate f ⩵ p2.

◼ Obtain the list of square divisors of p.  For each divisor d:

◼ Call solveRecursiveReduction to obtain solutions (x, y) of x2 - D y2 ⩵ f d2.

◼ Convert each solution to (u, v) ⩵ (p x, p y) which satisfies u2 - D v2 ⩵ f .

◼ Sift for integer solutions, sort and delete duplicates.
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In[504]:= solveuvByRecursiveReduction[z_] := Module

{p, q, D, f, uvvalues, divisorlist},
p = Numerator[z]; q = Denominator[z];
D = q (q - 2 p); f = p2;

If D > 0 && D ∉ Rationals ,

divisorlist = Divisors[p];
uvvalues = {};
Do

uvvalues = Joinuvvalues,

Casesd solveRecursiveReductionD, f  d2, {_Integer, _Integer};

, {d, divisorlist};

DeleteDuplicates[Sort[uvvalues]] (* return result *)

, (* else *) Print["D=", D, " not OK"]





Now the function to generate (x, y) solutions.  It is the same as solveHyperbolicByReduction 
except for calling the recursive reduction method routine instead.  Optional argument iters is the 
number of Pell iterations to run (default 3).  Optional argument tableform is True  (default) to 
format solutions in a table; otherwise they are output in a list suitable for input to other functions.  This 
function uses solvePell, solveRecursiveReduction,  solveuvByRecursiveReduction, 
and uvGetClasses.
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In[505]:= solveHyperbolicByRecursiveReduction[z_, iters_: 3, tableform_: True] :=

Module{p, q, D, hkpell, h, k, uvsolns, xysolns},

p = Numerator[z];
q = Denominator[z];
D = q (q - 2 p);
hkpell = solvePell[D]; (* get the base solution *)

IfLength[hkpell] ⩵ 2,

{h, k} = hkpell;
uvsolns = uvGetClasses[Evaluate[solveuvByRecursiveReduction[z]]];
uvsolns = Flatten[Table[RecurrenceTable[{

u[i + 1] ⩵ h u[i] + D k v[i],
v[i + 1] ⩵ k u[i] + h v[i],
u[1] ⩵ uv[[1]],
v[1] ⩵ uv[[2]]},

{u, v}, {i, iters}],
{uv, uvsolns}]

, 1]; (* Flatten to produce list of {u,v} pairs *)

xysolns = Table
1

2


p - u

2 p - q
- v ,

p - u

2 p - q
+ v  /. {u → uv[[1]], v → uv[[2]]},

{uv, uvsolns};

xysolns = DeleteDuplicates[
Sort[Cases[Sort /@ xysolns, {_Integer?Positive, _Integer?Positive}]]];

If[tableform,
TableForm[xysolns, TableHeadings → {None, {"x", "y"}}],
xysolns]





Try it out on an example done earlier.

In[506]:= solveHyperbolicByRecursiveReduction[4 / 11]
Out[506]//TableForm=

x y
105 336
336 1072
1072 3417

Going to 5th Pell generation yields two sets of recycling triplets.
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In[507]:= solveHyperbolicByRecursiveReduction[4 / 11, 5]
Out[507]//TableForm=

x y
105 336
336 1072
1072 3417
223377 711712
711712 2267616
2 267616 7224945

Here is an example that has solutions missed by the Pell equation method.   I verified by direct search 
(not shown here) that the method of recursive reduction does not miss any solutions in this range.

In[508]:= solveHyperbolicByRecursiveReduction[20 / 41, 2]
Out[508]//TableForm=

x y
16 25
85 120
120 168
552 760
760 1045
2905 3984
12609 17280
17280 23680
23680 32449
102544 140505
388245 531960
531960 728872

Note on runtime efficiency

For small p the method of recursive reduction has the advantage over the method of reduction that it is 
much faster (10 or more times faster in tests).  This is mainly because the method of reduction com-
putes convergents more times.  Of course, for small p both methods take much less than 1 second on  a 
typical laptop to solve the equation, but if one wants to run a loop to, say, do a search to test a hypothe-
sis, the advantage of this other method can be significant.  However, for p larger than about 1000, 
recursive reduction is slower than reduction.

In[509]:= Timing[solveuvByRecursiveReduction[6 / 17];]

Out[509]= {0.005659, Null}

In[510]:= Timing[solveuvByReduction[6 / 17];]

Out[510]= {0.098075, Null}

In[511]:= Timing[solveuvByRecursiveReduction[97 / (2 × 97 + 1)];]

Out[511]= {0.008322, Null}
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In[512]:= Timing[solveuvByReduction[97 / (2 × 97 + 1)];]

Out[512]= {0.041556, Null}

In[513]:= Timing[solveuvByRecursiveReduction[541 / (2 × 541 + 1)];]

Out[513]= {0.180772, Null}

In[514]:= Timing[solveuvByReduction[541 / (2 × 541 + 1)];]

Out[514]= {0.237254, Null}

Prime values of p are special11.14  
In explorations of solutions for a large number of hyperbolic ratios, I noticed there were no exceptions 
to the following statement:

◼ If p is prime, q > 2 p, and D nonsquare, there are no solutions to Equation (2) except those arising 
from applying the Pell recurrence to the trivial solutions.  In other words, these cases have only the 3 
classes of solutions that always exist.

A proof of this statement is given in Section 12.5.

For composite p, there are often additional classes, yielding singlets, doublets, or triplets.   (Except for 
p ⩵ 4; see next section.)

This result greatly simplifies the solution when p is prime: applying the Pell recurrence to the three 
trivial solutions generates all solutions.  There is no need to use one of the reduction methods or direct 
search, which generally take much more computation than solving the Pell equation.  It puts ratios 
with very large p and q values in range to be completely solved.

One can understand that prime p should yield fewer solutions than composite p, since there will be no 
subsidiary equations obtained by dividing Equation (11) by the squares of non-trivial divisors of p, 
which can yield additional solutions that have the divisor as gcd.  However, there is nothing that says in 
general Equation (11) itself cannot have additional primary solutions.  For instance,

In[515]:= uvGetClasses[solveuvByRecursiveReduction[6 / 17]]

Out[515]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}

In[516]:= uvGetClasses[solveuvByReduction[6 / 17]]

Out[516]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}

The first three are in the trivial-solution class.  The next two pairs are solutions from subsidiary equa-
tions and have common factors of 2 and 3 respectively.  The last pair consists of relatively prime values 
and hence comes from Equation (11) directly.
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In[517]:= {GCD[74, 8],
GCD[249, 27],
GCD[839, 91]}

Out[517]= {2, 3, 1}

So something must be happening to prevent this when p is prime.  What that is is shown in Section 12.5.

The case p ⩵ 4 is also special11.14.1 

I also observed that when p ⩵ 4, p /q < 1 /2, and D is nonsquare, the only solutions are those in the 
trivial classes, the same as for prime p.  I consider this behavior unexpected.  It requires that the only 
relatively prime solutions of Equation (11)  be those in the trivial classes, and also that Equation (11)  
divided by 4 has no solutions.  (Those would be solutions of Equation (11) with u, v even.)

Stated formally:

◼ If p ⩵ 4, q > 8, and D nonsquare, there are no solutions to Equation (2) except those arising from 
applying the Pell recurrence to the trivial solutions.  In other words, these cases have only the 3 
classes of solutions that always exist.

A proof of this statement is given in Section 12.6.

Near-triangular solutions for hyperbolic cases11.15  
This section can be skipped without loss of continuity, but I thought it showed some interesting relation-
ships among solutions and between the elliptical and hyperbolic cases.

In Section 8.5.3 we explored cases yielding solutions in which x, y are 1 plus successive triangular 
numbers.  These turn out to all be for elliptical ratios of the form p / (2 p - 1), and also have vertex 
solutions where x ⩵ y ⩵ p.  There are similarities to the cases where x, y are 1 less than successive 
triangular numbers, which lie in the hyperbolic region.

We can derive an expression for z ⩵ p /q for which solutions are 1 less than successive triangular 
numbers.

In[518]:= zfortriangminus1 = Simplifyprobdifferentv
(v - 1)

2
- 1, v

(v + 1)

2
- 1

Out[518]=
4 - 5 v2 + v4

2 6 - 5 v2 + v4

The numerator and denominator factor nicely.  I don’t know how to make Mathematica give what I 
think is the ideally simplest form.  Start with the numerator.

In[519]:= Factor[Numerator[zfortriangminus1]]

Out[519]= (-2 + v) (-1 + v) (1 + v) (2 + v)

This is v2 - 1 v2 - 4.  Whether v is even or odd, it is a multiple of 4.
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In[520]:= Simplifyv2 - 1 v2 - 4 /. v → 2 n

Out[520]= 4 1 - 5 n2 + 4 n4

In[521]:= Simplifyv2 - 1 v2 - 4 /. v → 2 n + 1

Out[521]= 4 n (1 + n) -3 + 4 n + 4 n2

In[522]:= Factor[Denominator[zfortriangminus1] / 2]

Out[522]= -3 + v2 -2 + v2

Whether v is even or odd, this is a multiple of 2, but not 4.

In[523]:= Simplify-3 + v2 -2 + v2 /. v → 2 n

Out[523]= 6 - 20 n2 + 16 n4

In[524]:= SimplifyExpand-3 + v2 -2 + v2 /. v → 2 n + 1

Out[524]= 2 1 - 6 n + 2 n2 + 16 n3 + 8 n4

So we have expressions for p and q separately.

In[525]:= pfortriangminus1 =
1

4
Numerator[zfortriangminus1]

Out[525]=
1

4
4 - 5 v2 + v4

In[526]:= qfortriangminus1 =
1

4
Denominator[zfortriangminus1]

Out[526]=
1

2
6 - 5 v2 + v4

These obey q ⩵ 2 p + 1, which implies they are relatively prime.

In[527]:= Simplify[qfortriangminus1 - 2 pfortriangminus1]

Out[527]= 1

List the first few ratios in this category.  Omit v ≤ 2 which give 0 for p or q.

In[528]:= Table[zfortriangminus1, {v, 3, 10}]

Out[528]= 
10

21
,
45

91
,
126

253
,
280

561
,

540

1081
,

945

1891
,
1540

3081
,
2376

4753


In[529]:= solveHyperbolicByReduction[10 / 21, 1]
Out[529]//TableForm=

x y
2 5
5 10
10 18

The smallest solution is (3 - 1, 6 - 1) where 3 and 6 are successive triangular numbers.  The larger 
solutions are not of that form.
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The smallest solution is (3 - 1, 6 - 1) where 3 and 6 are successive triangular numbers.  The larger 
solutions are not of that form.

In[530]:= solveHyperbolicByReduction[45 / 91, 1]
Out[530]//TableForm=

x y
5 9
33 45
45 60
120 153
324 405
405 505

The smallest solution is (6 - 1, 10 - 1).

In[531]:= solveHyperbolicByReduction[126 / 253, 1]
Out[531]//TableForm=

x y
9 14
105 126
126 150
234 273
826 945
945 1080
1548 1764
1764 2009
5460 6201
8769 9954
9954 11298
30226 34290
48374 54873
54873 62244
62244 70604
99576 112945
301224 341649
341649 387498
546390 619710
1 652294 1873998
1 873998 2125449

The smallest solution is (10 - 1, 15 - 1).

Notice that in all three examples the second solution has y ⩵ p, and the third solution has x ⩵ p.  We 
can show that these solutions always occur for this case (though not necessarily as second and third 
solutions).

We need to show that assuming y ⩵ p when p /q is of the required form yields integer x.
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In[532]:= Solve[xyeqn[{x, y}], x] /. y → p

Out[532]= x →
p - 2 p2 + 2 p q - p2 + 4 p2 q - 8 p3 q + 4 p2 q2

2 p
,

x →
p - 2 p2 + 2 p q + p2 + 4 p2 q - 8 p3 q + 4 p2 q2

2 p


In[533]:= Simplify[% /. {q → 2 p + 1}, Assumptions → p > 2]

Out[533]= x →
3

2
+ p -

1

2
9 + 16 p , x →

1

2
3 + 2 p + 9 + 16 p 

In[534]:= Simplify[% /. {p → pfortriangminus1}, Assumptions → v > 2]

Out[534]= x →
1

4
20 - 9 v2 + v4, x →

1

4
v2 -1 + v2

The first of these factors:

In[535]:= Factor
1

4
20 - 9 v2 + v4

Out[535]=
1

4
(-2 + v) (2 + v) -5 + v2

⩵
1

4
v2 - 4 v2 - 5

Try this out for the first case.

In[536]:= % /. v → 3

Out[536]= 5

The first of these gives the second solution (5, 10), and the second gives (18, 10) which is the symmetric 
partner of the third solution.

So now we just need to show that these are integer for all v.

For even v

In[537]:= Simplify
1

4
20 - 9 v2 + v4,

1

4
v2 -1 + v2 /. v → 2 n

Out[537]= 5 - 9 n2 + 4 n4, n2 -1 + 4 n2

This is integer.

For odd v

In[538]:= Simplify
1

4
20 - 9 v2 + v4,

1

4
v2 -1 + v2 /. v → 2 n + 1

Out[538]= 3 - 7 n - 3 n2 + 8 n3 + 4 n4, n (1 + n) (1 + 2 n)2

Also integer.  QED.
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Remarks

In this section we showed that a subset of ratios of the form p / (2 p + 1) have a solution consisting of 
two consecutive triangular numbers minus 1, and two more solutions in which one member is p.

There are some similarities to the elliptical special cases in Section 8.5.3, which are a subset of ratios of 
the form p / (2 p - 1).  These have a solution consisting of two triangular numbers plus 1, and two more 
solutions in which one member is p.  There are some differences: for the elliptical case, all ratios of the 
form p / (2 p - 1) have solutions in which one member is p, but for the hyperbolic case, in general ratios 
of the form p / (2 p + 1) do not have such a solution.  (As shown in Section 5.2.1, they do have inadmissi-
ble solutions around the negative vertex in which one member is -p.)

I have the feeling that there is something much bigger going on here, and we are only seeing the ripples 
on the surface from some enormous creature lurking in the mysterious depths.

Various proofs12 
This section contains proofs of various claims made in the previous sections.  They are placed here to 
avoid cluttering the exposition.

No solutions exist between the three ellipse circum-
vertex points

12.1  

When examining the exhaustive enumeration of solutions for the elliptical case, in Section 8.3, we 
calculated the range of z ⩵ p /q that would be covered by enumeration for a given maximum value of x 
and y.  The minimum z was calculated conservatively there as the value that gives the maximum x at 
the vertex of the ellipse.  This is conservative since somewhat smaller values of z (longer ellipses) would 
still fall short of x + 1.  That is, if

xe
2 xe - 1

≤ z ≤ 1, xe ⩵ xmax

then this range of z values is definitely covered by a search over x ≤ y ≤ xmax.  But in fact some slightly 
smaller z values are also covered, for which the ellipse still does not reach xmax + 1.  We’d like a more 
precise bound.  One could use instead

xe
2 xe - 1

< z ≤ 1, xe ⩵ xmax + 1

(note the change to a nonstrict inequality at the smaller bound) but now there seems to be the possibil-
ity that some solutions involving xmax + 1 could exist and would be missed. The ellipse extends slightly 
further in x or y near the vertex, in the arc to the points (xe, xe - 1) and (xe - 1, xe).   Here we prove the 
claim stated in Section 8.3.1 that no solutions can exist in the arc between the points at the vertex and 
1 unit away from it in x or y, so this bound is safe to use.
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(note the change to a nonstrict inequality at the smaller bound) but now there seems to be the possibil-
ity that some solutions involving xmax + 1 could exist and would be missed. The ellipse extends slightly 
further in x or y near the vertex, in the arc to the points (xe, xe - 1) and (xe - 1, xe).   Here we prove the 
claim stated in Section 8.3.1 that no solutions can exist in the arc between the points at the vertex and 
1 unit away from it in x or y, so this bound is safe to use.

The question is whether an integer solution can exist in the interval between the endpoint where x ⩵ y 
and the points that are 1 unit away in x or y.  Let xe, not necessarily integer, be the endpoint, so that 
(xe, xe) lies on the ellipse.  Then the points (xe - 1, xe) and (xe, xe - 1) also lie on the ellipse.  This can be 
proved as follows:

In[539]:= Reduce[probdifferent[{x, x}] ⩵ probdifferent[{x - 1, x}], x]

Out[539]= True

Suppose an integer point (x, y) lies on the ellipse strictly between (xe - 1, xe) and (xe, xe).

Here is a plot showing the situation.  (Ignore the actual numbers, which are just for the illustration.)  
The ellipse (blue) extends above the horizontal line passing through the vertex.  Drop a line segment 
(red) from (x, y) to (x, x) on the line (yellow) y ⩵ x.  The length y - x of this line segment needs to be 
integer if (x, y) is to be integer, since (y, x) must also be integer.

In[540]:= xyforlineseg = Join[{{5.5, y}} /.
Solve[{xyeqn[{5.5, y}] /. {p → 59, q → 108}, y > 5.5}][[1]], {{5.5, 5.5}}]

Out[540]= {{5.5, 6.03349}, {5.5, 5.5}}
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In[541]:= yvaluesforplot = Solve[xyeqn[{x, y}] /. {p → 59, q → 108}, y];
Show[Plot[{Labeled[y /. yvaluesforplot, "(x,y)", Above], x}, {x, 4.5, 6.5},

PlotRange → {{4.5, 6.5}, {4.5, 6.5}}, AspectRatio → 1,
GridLines → {{5.9}, {5.9}},
AxesLabel → {"x", "y"}],

ListLinePlot[xyforlineseg, PlotStyle → {Red}],
Graphics[Text[Style["xe"], {5.9, 4.45}]],
Graphics[Text[Style["xe"], {4.45, 5.9}]]

]

Out[542]=

Assume xe - 1 < x < xe and then y ⩵ xe + δ with 0 < δ ≤ δmax where δmax is the maximum vertical excur-
sion of the ellipse above the horizontal line y ⩵ xe through the endpoint.  Let x ⩵ xe - 1 + ξ with 
0 < ξ < 1.  Then y - x is

In[543]:= Simplify[y - x /. {x → xe - 1 + ξ, y → xe + δ}]

Out[543]= 1 + δ - ξ

Now, using the limits on ξ and δ, the minimum is

In[544]:= 1 + δ - ξ /. {δ → 0, ξ → 1}

Out[544]= 0

The maximum is

In[545]:= 1 + δ - ξ /. {δ → δmax, ξ → 0}

Out[545]= 1 + δmax

Thus
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0 < y - x < 1 + δmax

But  0 < δmax < 1 as we will show.  (In fact δmax ≤
1
2
 2 - 1 ≃ 0.21.)  Therefore since y - x = 0 is excluded 

by the strict inequality, integer solutions must obey y - x ⩵ 1.  This is (y - 1, y) which implies (y, y) is 
also a solution, contrary to the strict inequality.  We conclude that there can be no solutions in the 
interval strictly between the endpoint and its neighbors 1 unit away.

We need to put a bound on δmax to show that y - x ≥ 2 is not a possibility.  The maximum value of y is 
found by solving the ellipse equation for x and finding where the two solutions are equal.

In[546]:= xvsy = Solve[probdifferent[{x, y}] ⩵ z, x]

Out[546]= x →
2 y + z - 2 y z - 4 y2 + 4 y z - 8 y2 z + z2

2 z
, x →

2 y + z - 2 y z + 4 y2 + 4 y z - 8 y2 z + z2

2 z


Making these equal requires the term inside the radical to be zero.  Here is the right sequence of parts 
to pluck it out:

In[547]:= terminradical = Part[xvsy, 1, 1, 2, 3, 4, 2, 1]

Out[547]= 4 y2 + 4 y z - 8 y2 z + z2

In[548]:= ymaxvsz = Solve[terminradical ⩵ 0, y]

Out[548]= y →
z - 2 z3/2

2 (-1 + 2 z)
, y →

z + 2 z3/2

2 (-1 + 2 z)


The negative branch gives the minimum y, so we need the positive branch to get maximum y.

In[549]:= ymax = Part[ymaxvsz, 2, 1, 2]

Out[549]=
z + 2 z3/2

2 (-1 + 2 z)

Verify that this is positive for elliptical ratios.

In[550]:= Reduce[ymax > 0, z]

Out[550]= z >
1

2

Now take the difference between ymax and the endpoint value ye ⩵ xe.

In[551]:= deltamax = Simplifyymax -
z

2 z - 1


Out[551]=
z - 2 z3/2

2 - 4 z

Determine for what range of z this is less than 1.

In[552]:= Reduce[deltamax < 1, z]

Out[552]= 0 ≤ z <
1

2
||

1

2
< z < 2 3 + 2 2 

There is an indefinite value at z ⩵ 1 /2, but for all values of 1 /2 < z ≤ 1 the inequality holds.  Look for a 
tighter bound.  Here is δmax at the maximum z ⩵ 1.
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There is an indefinite value at z ⩵ 1 /2, but for all values of 1 /2 < z ≤ 1 the inequality holds.  Look for a 
tighter bound.  Here is δmax at the maximum z ⩵ 1.

In[553]:= deltamax /. z → 1

Out[553]=
1

2
-1 + 2 

In[554]:= % // N

Out[554]= 0.207107

So the maximum difference between the endpoint and max y is about 0.2.  Now look at it as z → 1 /2.

In[555]:= deltamaxvseps = Simplifydeltamax /. z →
1

2
+ ϵ

Out[555]=

(1 + 2 ϵ) -1 + 1 + 2 ϵ 

8 ϵ

For small ϵ the term (1 + 2 ϵ) → 1.  The term -1 + 1 + 2 ϵ  → (-1 + (1 + ϵ)) ⩵ ϵ.  So this difference goes 

to 1 /8.  Here is the Taylor series expansion up to the linear term:

In[1116]:= Series[deltamaxvseps, {ϵ, 0, 1}]

Out[1116]=
1

8
+
3 ϵ

16
+ O[ϵ]2

Hence the excursion is limited to between 0.125 and about 0.2.

The strict upper bound occurs at z ⩵ 1 and was found above.  Verify that it holds over the whole ellipti-
cal range.

In[557]:= Reduce1 / 2 < z ≤ 1, deltamax ≤
1

2
 2 - 1, z

Out[557]=
1

2
< z ≤ 1

We have shown that δmax < 1, which in turn implies that there can be no solutions in between (xe, xe) 
and (xe - 1, xe) or (xe, xe - 1).  Hence solutions cannot exceed the value of xe, and it is safe to use the 
bound z > xe / (2 xe - 1) where the vertex xe ⩵ xmax + 1 where xmax is the largest value of x or y used in the 
exhaustive search.

Number of solutions for hyperbolic nonsquare D is 
infinite

12.2  

We have seen that solutions (u, v) to Equation (11) sometimes yield fractional (x, y) values.  For 
instance, the trivial solutions are integer, but often the next Pell generation is fractional.  Here we prove 
that if one generation has integer (x, y), then two generations later (x, y) will also be integer.  Since the 
trivial solutions are always integer, this guarantees that admissible solutions will appear in the third 
generation and every odd generation thereafter, proving that the number of admissible solutions is 
infinite.
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We have seen that solutions (u, v) to Equation (11) sometimes yield fractional (x, y) values.  For 
instance, the trivial solutions are integer, but often the next Pell generation is fractional.  Here we prove 
that if one generation has integer (x, y), then two generations later (x, y) will also be integer.  Since the 
trivial solutions are always integer, this guarantees that admissible solutions will appear in the third 
generation and every odd generation thereafter, proving that the number of admissible solutions is 
infinite.

Assume that (x, y) is an integer solution to Equation (2).  We do not require this solution to be admissi-
ble (x ≥ 0, y ≥ 0, x + y ≥ 2), just integer.

Apply two generations of the Pell recurrence:

In[558]:= {unplus2, vnplus2} =

Simplify[nextPell[nextPell[uvfromxy[{x, y}]]], Assumptions → pelleqn[{h, k}, D]]

Out[558]= 2 D h k (-x + y) + h2 (p + (-2 p + q) (x + y)) + D k2 (p + (-2 p + q) (x + y)),

h2 (-x + y) + D k2 (-x + y) + 2 h k (p + (-2 p + q) (x + y))

This simplifies a bit further.  I don’t know how to get Mathematica to put it in this form, but it can verify 
that it is the same as the above:

In[559]:= Simplify{unplus2, vnplus2} ⩵ h2 + D k2 (p + (q - 2 p) (x + y)) - 2 D h k (x - y),

-h2 + D k2 (x - y) + 2 h k (p + (q - 2 p) (x + y))

Out[559]= True

Convert back to (x, y).

In[560]:= {xnplus2, ynplus2} = Simplify[xyfromuv[{unplus2, vnplus2}] /. D → q (q - 2 p),
Assumptions → {pelleqn[{h, k}, q (q - 2 p)], xyeqn[{x, y}]}]

Out[560]= 
q 1 - 2 h2 + 2 h k q x + p 1 - 2 x + h2 (-1 + 4 x) + h k q (1 - 6 x - 2 y) + 2 h k p2 (-1 + 2 x + 2 y)

2 p - q
,

q 1 - 2 h2 - 2 h k q y - 2 h k p2 (-1 + 2 x + 2 y) + p 1 - 2 y + h2 (-1 + 4 y) + h k q (-1 + 2 x + 6 y)

2 p - q


This has not used the Pell equation to simplify the terms involving h2, which can introduce factors of 
2 p - q to cancel the denominator.  Try again where we explicitly substitute h2.

In[561]:= {xnplus2, ynplus2} =

Simplifyxyfromuv[{unplus2, vnplus2}] /. h2 → 1 + q (q - 2 p) k2, D → q (q - 2 p),

Assumptions → {pelleqn[{h, k}, q (q - 2 p)], xyeqn[{x, y}]}

Out[561]= x + k2 q (p - 4 p x + 2 q x) + h k (-2 q x + p (-1 + 2 x + 2 y)),

y + k2 q (p - 4 p y + 2 q y) + h k (p - 2 p x - 2 p y + 2 q y)

Again, this simplifies a bit further.

In[562]:= Simplify{xnplus2, ynplus2} ⩵ x + k2 q (p + 2 (q - 2 p) x) + h k (p (2 (x + y) - 1) - 2 q x),

y + k2 q (p + 2 (q - 2 p) y) - h k (p (2 (x + y) - 1) - 2 q y)

Out[562]= True

This expression is clearly integer if x, y and all other variables are integer.  QED.
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◼ Note

Since the Pell recurrence can be run forward or backward, this result implies that if a given class of 
solutions yields fractional (x, y) for two successive generations, then all generations of that class will 
be fractional.  An example was seen in Section 11.12.6, for p /q ⩵ 8 /19.  It has two classes that yield no 
admissible solutions.

Pell recurrence from trivial solutions gives recycling 
triplets

12.3  

In Section 11.8 we noted that applying the Pell recurrence to the solution (u, v) ⩵ (p, 0), which corre-
sponds to the trivial solution (x, y) ⩵ (0, 0) yields the solution (u, v) ⩵ (p h, p k) where (h, k) is the base 
solution of the Pell Equation.

We now show that this holds in general, and that the companion solutions (u, v) ⩵ (q - p, ±1), which 
correspond to the other trivial solutions (x, y) ⩵ (0, 1) and (1, 0) yield the neighbors given by applying 
the recycling recurrence to that solution.

We will show algebraically, using a proof by induction, that the x, y recurrence starting from the three 
trivial solutions yields a series of solution triplets related by the recycling recurrence.  We will work with 
a single step of the iteration, since it is simpler and it does not matter that the solutions are not guaran-
teed to be integer.

The proof is in the form of an induction proof, and has two parts:

◼ Base case: showing that the solutions found by applying the x, y recurrence to the three trivial 
solutions form a recycling triplet.

◼ Inductive step: showing that applying the Pell recurrence to members of a recycling pair yields 
another recycling pair.  This result is stronger than needed for the present claim.  It not only implies 
that a recycling triplet goes to a recycling triplet, but that any recycling pair, regardless of its origin, 
goes to another recycling pair.

The proof involves a lot of algebra, but fortunately we have Mathematica to do the heavy lifting.

We will often use the formula for obtaining (x, y) from (u, v) defined in Section 4.2.5:

In[563]:= xyfromuv[{u, v}]

Out[563]= 
1

2

p - u

2 p - q
- v ,

1

2

p - u

2 p - q
+ v 

and the recycling recurrence defined in Section 5.4:

In[564]:= recycle[{x, y}]

Out[564]= y,
(-1 + y) y

x

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Base case12.3.1 

First, recall the correspondence between trivial solutions in (u, v) and in (x, y):

In[565]:= Simplify[xyfromuv /@

{{q - p, -1}, {p, 0}, {q - p, 1}}]

Out[565]= {{1, 0}, {0, 0}, {0, 1}}

We want to show that the same sequence is followed when the recycling recurrence is applied to the 
next generation solutions.

Here is the Pell recurrence in (u, v), repeated from Equation (24):

un+1 ⩵ h un + D k vn
vn+1 ⩵ k un + h vn

Apply the Pell recurrence to each of the trivial solutions (p, 0), (q - p, ±1).  The variable names here 
reflect the values of (x, y) corresponding to the (u, v) solutions.

In[566]:= uvfrom10 = Simplify[{h u + D k v, k u + h v} /. {u → q - p, v → -1, D → q (q - 2 p)}]

Out[566]= {k (2 p - q) q + h (-p + q), -h + k (-p + q)}

In[567]:= uvfrom00 = Simplify[{h u + D k v, k u + h v} /. {u → p, v → 0, D → q (q - 2 p)}]

Out[567]= {h p, k p}

In[568]:= uvfrom01 = Simplify[{h u + D k v, k u + h v} /. {u → q - p, v → 1, D → q (q - 2 p)}]

Out[568]= {k q (-2 p + q) + h (-p + q), h + k (-p + q)}

We observe that the solution coming from (p, 0) is the solution obtained by the Pell equation method 
developed in Section 11.3.

Convert these to (x, y).

In[569]:= xyfrom10 = Simplify[xyfromuv[uvfrom10]]

Out[569]= 
p + 3 h p + 2 k p2 - 2 h q - 5 k p q + 2 k q2

4 p - 2 q
,
p (1 - h + k (-2 p + q))

4 p - 2 q


In[570]:= xyfrom00 = Simplify[xyfromuv[uvfrom00]]

Out[570]= 
p (1 - h + k (-2 p + q))

4 p - 2 q
,
1

2
k p +

p - h p

2 p - q


In[571]:= xyfrom01 = Simplify[xyfromuv[uvfrom01]]

Out[571]= 
p (1 - h + 2 k p - k q)

4 p - 2 q
,

-2 k p2 - 2 q (h + k q) + p (1 + 3 h + 5 k q)

4 p - 2 q


Verify that these yield a recycling triplet for the example 7 /18.
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In[572]:= {h7o18, k7o18} = solvePell[q (q - 2 p) /. {p → 7, q → 18}]

Out[572]= {17, 2}

In[573]:= {xyfrom10, xyfrom00, xyfrom01} /. {p → 7, q → 18, h → h7o18, k → k7o18}

Out[573]= {{2, 7}, {7, 21}, {21, 60}}

Indeed, they are a recycling triplet.

Now verify algebraically.  First, the pair of solutions corresponding to (1, 0) → (0, 0).   Show that recy-
cling the solution obtained by applying the Pell recurrence to (1, 0) yields the one from (0, 0).

In[574]:= Simplify[recycle[xyfrom10] ⩵ xyfrom00]

Out[574]= 0,
p -1 + h2 + k2 (2 p - q) q

p + 3 h p + 2 k p2 - 2 h q - 5 k p q + 2 k q2
 ⩵ {0, 0}

Observe the numerator of the y expression contains the Pell Equation.  Use the fact that h, k satisfy the 
Pell Equation.

In[575]:= Simplify%, Assumptions → h2 - q (q - 2 p) k2 ⩵ 1

Out[575]= True

Now the same for (0, 0) → (0, 1).

In[576]:= Simplify[recycle[xyfrom00] ⩵ xyfrom01]

Out[576]= 0,
1 - h2 + k2 q (-2 p + q)

-1 + h + 2 k p - k q
 ⩵ {0, 0}

In[577]:= Simplify%, Assumptions → h2 - q (q - 2 p) k2 ⩵ 1

Out[577]= True

Q.E.D.

So we have proved that the Pell recurrence applied to the trivial solutions gives a recycling triplet.

Inductive step12.3.2 

We now prove that if (X, Y) and (Y , Z) are a recycling pair of solutions of (2), then applying the Pell 
recurrence to them yields another recycling pair.  First, convert these to (u, v) for applying the Pell 
recurrence.

In[578]:= uvforXY = Simplify[uvfromxy[{X, Y}]]

Out[578]= {p + (-2 p + q) (X + Y), -X + Y}

Put (Y , Z) in terms of (X, Y) using the recycling recurrence.

In[579]:= recycle[{X, Y}]

Out[579]= Y,
(-1 + Y) Y

X

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Convert to (u, v).

In[580]:= uvforYZ = Simplify[uvfromxy[%]]

Out[580]= p +
(-2 p + q) Y (-1 + X + Y)

X
,
Y (-1 - X + Y)

X


Apply the Pell recurrence to obtain the next generation solutions.  First, the (u, v) corresponding to 
(X, Y). 

In[581]:= uvfromXY =

Simplify[{h u + D k v, k u + h v} /. {u → uvforXY[[1]], v → uvforXY[[2]], D → q (q - 2 p)}]

Out[581]= {k q (-2 p + q) (-X + Y) + h (p + (-2 p + q) (X + Y)), h (-X + Y) + k (p + (-2 p + q) (X + Y))}

And now the next generation of (u, v) corresponding to (Y , Z).

In[582]:= uvfromYZ =

Simplify[{h u + D k v, k u + h v} /. {u → uvforYZ[[1]], v → uvforYZ[[2]], D → q (q - 2 p)}]

Out[582]= 
k q (-2 p + q) Y (-1 - X + Y)

X
+ h p +

(-2 p + q) Y (-1 + X + Y)

X
,

h Y (-1 - X + Y)

X
+ k p +

(-2 p + q) Y (-1 + X + Y)

X


Convert these back to (x, y).

In[583]:= xyfromXY = Simplify[xyfromuv[uvfromXY]]

Out[583]= 
p + 2 q (-h + k q) X + h p (-1 + 4 X) + k p q (1 - 6 X - 2 Y) + 2 k p2 (-1 + 2 X + 2 Y)

4 p - 2 q
,

p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

4 p - 2 q


In[584]:= xyfromYZ = Simplify[xyfromuv[uvfromYZ]]

Out[584]= 
1

4 p X - 2 q X
2 q (-h + k q) X Y + 2 k p2 (2 (-1 + Y) Y + X (-1 + 2 Y)) +

p (-2 k q (-1 + Y) Y + X (1 - h + k q + 4 h Y - 6 k q Y)),
1

4 p X - 2 q X
-2 q (h + k q) (-1 + Y) Y + 2 k p2 (X - 2 X Y - 2 (-1 + Y) Y) +

p (2 (2 h + 3 k q) (-1 + Y) Y - X (-1 + h + k q - 2 k q Y))

Apply the recycling recurrence to the first solution.  The result should equal the second solution.
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In[585]:= xyfromXYrecycle = Simplify[recycle[xyfromXY]]

Out[585]= 
p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

4 p - 2 q
,

p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

-1 +
p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

4 p - 2 q


p + 2 q (-h + k q) X + h p (-1 + 4 X) + k p q (1 - 6 X - 2 Y) + 2 k p2 (-1 + 2 X + 2 Y)

Show that these two expressions for the second generation (Y , Z) are the same.

In[586]:= Simplify[xyfromXYrecycle ⩵ xyfromYZ]

Out[586]= 2 k q Y +
k p X - X2 + Y - 2 X Y - Y2

X
,

p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

-1 +
p - 2 q (h + k q) Y - 2 k p2 (-1 + 2 X + 2 Y) + h p (-1 + 4 Y) + k p q (-1 + 2 X + 6 Y)

4 p - 2 q


p + 2 q (-h + k q) X + h p (-1 + 4 X) + k p q (1 - 6 X - 2 Y) + 2 k p2 (-1 + 2 X + 2 Y) +

1

4 p X - 2 q X
2 q (h + k q) (-1 + Y) Y + 2 k p2 (2 (-1 + Y) Y + X (-1 + 2 Y)) +

p (-2 (2 h + 3 k q) (-1 + Y) Y + X (-1 + h + k q - 2 k q Y)) ⩵ {0, 0}

We can see terms from Equation (2) appearing in these expressions.  Use that equation to cancel terms.

In[587]:= Simplify%, Assumptions → p X2 - 2 (q - p) X Y + p Y2 - p X - p Y ⩵ 0

Out[587]= 0,
p -1 + h2 + k2 (2 p - q) q

p + 2 q (-h + k q) X + h p (-1 + 4 X) + k p q (1 - 6 X - 2 Y) + 2 k p2 (-1 + 2 X + 2 Y)
 ⩵ {0, 0}

Now we see the Pell Equation (20) in the numerator.

In[588]:= Simplify%, Assumptions → h2 - q (q - 2 p) k2 ⩵ 1

Out[588]= True

QED.

Note that the only assumption made here was that (X, Y) and (Y , Z) are a recycling pair, so this implies 
that any such pair is taken to another recycling pair by the Pell recurrence.

There is no guarantee that the new solutions will be admissible, but it was shown in Section 12.2 that if 
the starting solutions are admissible, at least every other generation thereafter is admissible.
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Recycling recurrence is complete for p ⩵ 1 and p ⩵ 212.4  
In Section 11.9.3 we showed that for p ⩵ 1 all solutions belong to one class, which implies that the 
recycling recurrence gives the same set of solutions as the Pell recurrence, and is complete.  We now 
look at p ⩵ 1 from another viewpoint, and also show that for p ⩵ 2 the recycling recurrence is complete.

The case p ⩵ 112.4.1 

Here we need to require q > 2 since p /q ⩵ 1 /1 is an elliptical case and p /q ⩵ 1 /2 is parabolic.  For these, 
D ⩵-1 and 0 respectively, for which the assumption D > 0 required for the Pell recurrence does not 
hold.  In Section 10.1 we showed that for p ⩵ 1 and q > 2, D is never square, so the Pell recurrence can 
be used.

Nagell p. 199 notes that if D ⩵ a2 - 1, the Pell equation r2 - D s2 ⩵ 1 has as its base solution

r ⩵ a, s ⩵ 1

In[589]:= Simplifyr2 - a2 - 1 s2 ⩵ 1 /. {r → a, s → 1}

Out[589]= True

This condition, D + 1 square, always holds when p ⩵ 1:

In[590]:= Simplify[q (q - 2 p) + 1 /. p → 1]

Out[590]= (-1 + q)2

Hence D ⩵ (q - 1)2 - 1 and the base solution of the Pell equation is

r ⩵ q - 1, s ⩵ 1

In[591]:= Simplifyr2 - q (q - 2 p) s2 ⩵ 1 /. {p → 1, r → q - 1, s → 1}

Out[591]= True

When p ⩵ 1, (u, v) ⩵ (r, s) and Equation (8) is the same as the Pell equation (20).  So we have precisely 
Nagell’s special case.  Note that there is a trivial solution (u, v) ⩵ (1, 0).  This converts to the trivial 
solution (x, y) ⩵ (0, 0):

In[592]:= xyfromuv[{1, 0}] /. p → 1

Out[592]= {0, 0}

The base solution converts to the trivial solution (0, 1):

In[593]:= xyfromuv[{q - 1, 1}] /. p → 1

Out[593]= {0, 1}

Reversing the sign of u gives negative (x, y), not admissible.  Reversing the sign of v swaps x and y.  
Thus we obtain all three trivial solutions from the Pell equation.

Applying the Pell recurrence gives the first nontrivial solution:
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In[594]:= Simplify[xyfromuv[nextPell[{q - 1, 1}] /. {D → q (q - 2), h → q - 1, k → 1}] /. p → 1]

Out[594]= {1, -1 + 2 q}

Since the Pell recurrence generates all solutions, continuing will generate the complete set of the 
solutions.

In recurrence form, {un+1, vn+1} is given by

In[595]:= nextPell[{un, vn}] /. {D → q (q - 2), h → q - 1, k → 1}

Out[595]= {(-1 + q) un + (-2 + q) q vn, un + (-1 + q) vn}

These are integer in form.  Get this in terms of (t, v).

In[596]:= Simplify[Solve[{un+1 ⩵ un (q - 1) + (q - 2) q vn,
vn+1 ⩵ un + (q - 1) vn} /. {un+1 → p + (q - 2 p) tn+1, un → p + (q - 2 p) tn}, {tn+1, vn+1}] /. p → ]

Out[596]= {{t1+n → 1 + (-1 + q) tn + q vn, v1+n → 1 + (-2 + q) tn + (-1 + q) vn}}

Now convert to (x, y).

In[597]:= Simplify[Solve[{t1+n ⩵ 1 + (-1 + q) tn + q vn, v1+n ⩵ 1 + (-2 + q) tn + (-1 + q) vn} /.
{tn+1 → xn+1 + yn+1 , vn+1 → yn+1 - xn+1, tn → xn + yn, vn → yn - xn}, {xn+1, yn+1 }]]

Out[597]= {{x1+n → yn, y1+n → 1 - xn + 2 (-1 + q) yn}}

This is the recycling recurrence, since it has xn+1 ⩵ yn and yn+1 ≠ xn.  The recycling recurrence cannot be 
started with the trivial solution, but beyond that this must be the same.

Hence we have shown that the recycling recurrence gives the same sequence of solutions (after the 
trivial solutions) as the Pell recurrence, and therefore is complete.

Verify with an example p /q ⩵ 1 /5 that this gives the same sequence as solution of the Pell equation.  
First, the recycling recurrence derived in Section 5.4:

In[598]:= TableForm[RecurrenceTable[
{x[n + 1] ⩵ y[n], y[n + 1] ⩵ y[n] (y[n] - 1) / x[n], x[1] ⩵ 1, y[1] == 9}, {x, y}, {n, 6}]]

Out[598]//TableForm=

1 9
9 72
72 568
568 4473
4473 35217
35217 277264

Now the Pell recurrence:
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In[599]:= TableForm[RecurrenceTable[
{x[n + 1] ⩵ y[n], y[n + 1] ⩵ 1 - x[n] + 2 (q - 1) y[n], x[1] ⩵ 0, y[1] ⩵ 1} /. q → 5,
{x, y}, {n, 7}]]

Out[599]//TableForm=

0 1
1 9
9 72
72 568
568 4473
4473 35217
35217 277264

This is the same as given by the method of solution via Pell equation.

In[600]:= solveHyperbolicByPell[1 / 5, 7]
Out[600]//TableForm=

x y
0 1
1 9
9 72
72 568
568 4473
4473 35217
35217 277264

The case p ⩵ 212.4.2 

Here we need to require q odd so that p and q are coprime, and q ≥ 5 since p /q ⩵ 2 /3 (D ⩵-3) is an 
elliptical case (and of course 2 /1 is not a probability).  For q ⩵ 3 the results actually hold, but the 
recurrence terminates.  In Section 10.1 we showed that for p ⩵ 2 and q > 4, D is never square, so the Pell 
recurrence can be used.

A generalization of D ⩵ a2 - 1 for the Pell equation is D ⩵ a2 - p2 for the u, v equation.  In fact, this 
always holds, with a ⩵ p - q.

In[601]:= Simplifyq (q - 2 p) + p2

Out[601]= (p - q)2

So the smallest positive solution is

u ⩵ q - p, v ⩵ 1

In[602]:= Simplifyu2 - q (q - 2 p) v2 ⩵ p2 /. {u → q - p, v → 1}

Out[602]= True

Map to x, y

In[603]:= Simplify[xyfromuv[{q - p, 1}]]

Out[603]= {0, 1}

So the fact that for D ⩵ (q - p)2 - p2 Equation (8) has this solution is simply a manifestation of the trivial 
solution.  It is not helpful for finding nontrivial solutions since one still needs to solve the Pell equation 
to obtain additional solutions via the Pell recurrence.  However, for p ⩵ 2 there is another recurrence 
that does not require solving the Pell equation, as we now develop.
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So the fact that for D ⩵ (q - p)2 - p2 Equation (8) has this solution is simply a manifestation of the trivial 
solution.  It is not helpful for finding nontrivial solutions since one still needs to solve the Pell equation 
to obtain additional solutions via the Pell recurrence.  However, for p ⩵ 2 there is another recurrence 
that does not require solving the Pell equation, as we now develop.

Hua Theorem 11.4.4 states that the complete set of solutions for

u2 - D v2 ⩵ 4

are given by

u + v D

2
⩵ ±

u0 + v0 D

2

n

, n ⩵ 0, ±1, ±2, ...

where u0, v0 is the smallest positive solution.  This is our equation when p ⩵ 2.  In this case the smallest 
positive solution is the trivial solution (u0, v0) ⩵ (q - 2, 1).

Using Hua’s recurrence, un+1 + vn+1 D  is given by

In[604]:= Collect

SimplifyExpand2
un + vn q (q - 4)

2

u0 + v0 q (q - 4)

2
 /. {u0 → q - 2, v0 → 1},

 (-4 + q) q 

Out[604]=
1

2
(-4 + q) q (un - 2 vn + q vn) +

1

2
-2 un + q un - 4 q vn + q2 vn

Equating rational and irrational parts,

un+1 ⩵
1

2
un (q - 2) - 4 q vn + q2 vn,

vn+1 ⩵
1

2
(un + (q - 2) vn)

These are not manifestly integer, but they are integer per Hua’s theorem 11.4.4.  Put it in terms of (t, v).

In[605]:= SimplifySolveun+1 ⩵
1

2
un (q - 2) - 4 q vn + q2 vn,

vn+1 ⩵
1

2
(un + (q - 2) vn) /. {un+1 → p + (q - 2 p) tn+1, un → p + (q - 2 p) tn}, {tn+1, vn+1} /.

p → 2

Out[605]= t1+n →
1

2
(2 + (-2 + q) tn + q vn), v1+n →

1

2
(2 + (-4 + q) tn + (-2 + q) vn)

And now in terms of (x, y).
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In[606]:= SimplifySolvetn+1 ⩵
1

2
(2 + (-2 + q) tn + q vn), v1+n ⩵

1

2
(2 + (-4 + q) tn + (-2 + q) vn) /.

{tn+1 → xn+1 + yn+1 , vn+1 → yn+1 - xn+1, tn → xn + yn, vn → yn - xn}, {xn+1, yn+1 }

Out[606]= {{x1+n → yn, y1+n → 1 - xn + (-2 + q) yn}}

In[607]:= Simplify[% /. q → 3]

Out[607]= {{x1+n → yn, y1+n → 1 - xn + yn}}

This is the same as the recycling recurrence, since it has xn+1 ⩵ yn and yn+1 ≠ xn.  Verify with an example 
p /q = 2 /5.  First, the recycling recurrence:

In[608]:= TableForm[RecurrenceTable[
{x[n + 1] ⩵ y[n], y[n + 1] ⩵ y[n] (y[n] - 1) / x[n], x[1] ⩵ 1, y[1] ⩵ 4}, {x, y}, {n, 9}]]

Out[608]//TableForm=

1 4
4 12
12 33
33 88
88 232
232 609
609 1596
1596 4180
4180 10945

Now, the recurrence derived here:

In[609]:= TableForm[RecurrenceTable[
{x[n + 1] ⩵ y[n], y[n + 1] ⩵ 1 - x[n] + (q - 2) y[n], x[1] ⩵ 0, y[1] ⩵ 1} /. q → 5,
{x, y}, {n, 10}]]

Out[609]//TableForm=

0 1
1 4
4 12
12 33
33 88
88 232
232 609
609 1596
1596 4180
4180 10945

Unlike the p ⩵ 1 case, the Pell solutions should match every third solution, since the three trivial 
solutions belong to different classes.
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In[610]:= solveHyperbolicByPell[2 / 5, 3]
Out[610]//TableForm=

x y
4 12
88 232
1596 4180

Conclusion12.4.3 

Since we have shown that the proven complete Pell recurrences for the solutions in the cases p ⩵ 1 and 
p ⩵ 2 are equivalent to the recycling recurrence (except for the trivial solutions), the recycling recur-
rence starting from the smallest nontrivial solution gives the complete set of solutions for these cases.

Note that the recurrences for p ⩵ 1 and p ⩵ 2 are the same in terms of Q where Q ⩵ q for p even and 
Q ⩵ 2 q for p odd.

For p ⩵ 1 :

In[611]:= Simplify[{{x1+n → yn, y1+n → 1 - xn + 2 (-1 + q) yn}} /. q → Q / 2]

Out[611]= {{x1+n → yn, y1+n → 1 - xn + (-2 + Q) yn}}

For p ⩵ 2:

In[612]:= Simplify[{{x1+n → yn, y1+n → 1 - xn + (-2 + q) yn}} /. q → Q]

Out[612]= {{x1+n → yn, y1+n → 1 - xn + (-2 + Q) yn}}

However, the two cases are fundamentally different since for p ⩵ 1 there is only one class of solutions, 
while for p ⩵ 2 there are three.

If p > 2 is prime, the only solution classes are the 
trivial-solution classes

12.5  

(To avoid an overly lengthy section title, the conditions that this be a hyperbolic case with nonsquare D 
are implicit.

The claim being proved here (stated earlier in Section 11.14) is that if p > 2 is prime, with p /q < 1 /2 and 
D nonsquare, then the only solutions that exist are those obtained by applying the Pell recurrence to 
the trivial solutions.  We work entirely in (u, v)-space in this section.

Introduction12.5.1 

To distinguish among the classes arising from the three trivial solutions, let us call the class to which 
the solution (u, v) ⩵ (q, 0) belongs ℂ0, the class to which (q - p, -1) belongs ℂ-1, and the one to which 
(q - p, 1) belongs ℂ1.

Outline of the proof:
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◼ Rewrite Equation (11) in the form of a product of two terms on the LHS equaling a multiple of p2 on 
the RHS.

◼ Show that for solutions in class ℂ-1 or ℂ1, one of the two terms on the LHS is itself a multiple of p2.

◼ Show that if one of the two terms on the LHS is a multiple of p2, then the solution is in class ℂ-1 or ℂ1.  
With the previous result, this is an if and only if.

◼ Show that there cannot be solutions of Equation (11)  for which each of the two terms on the LHS is a 
multiple of p.  Hence for prime p the only possible partitioning between the two terms is to have p2 
divide one of them and not the other.

From these steps we conclude that for prime p, since all solutions must have one of the two terms a 
multiple of p2, all relatively prime solutions are in class ℂ-1 or ℂ1.  The only other solution class is that 
obtained by dividing Equation (11) by p2, which is ℂ0.  Including this solution class, there are only three 
solution classes, the trivial-solution classes.

In all that follows in this section, it is assumed that p > 2, p /q < 1 /2, and D is nonsquare.  We also 
assume that the solutions (u, v) we are working  with have gcd(u, v) ⩵ 1, i.e. excluding solutions 
obtained by solving Equation (11) divided by divisors of p2.

Rewriting Equation (11) in factored form with p on RHS only12.5.2 

The initial goal is to rewrite Equation (11) with p absent from the left side.

u2 - D v2 ⩵ f
u2 - q (q - 2 p) v2 ⩵ p2

u2 - (q - p)2 - p2 v2 ⩵ p2

Let a ⩵ q - p.  This change replaces the parameters p, q by a new pair p, a, so we can treat a as indepen-
dent of p.  The only constraints on a are a > p and gcd(a, p) ⩵ 1.  We also require that a2 - p2 ⩵ D not be 
a square, so that the Pell recurrence is applicable.  In terms of p and a, Equation (11) takes the form

u2 - a2 - p2 v2 ⩵ p2

u2 - a2 v2 ⩵ 1 - v2 p2

(u - a v) (u + a v) ⩵ 1 - v2 p2

Rewrite so all terms are non-negative.

(a v - u) (a v + u) ⩵ v2 - 1 p2 (34)

Observe that changing the sign of u or v yields the same equation.  Changing one changes the solution 
to the conjugate class, while changing both keeps the solution in the same class.  For brevity, in the 
following section headings and bodies, the word “term” means a v - u or a v + u.

The trivial classes give a term that is a multiple of p212.5.3 

This step is not essential to the proof, since later we show the converse, which suffices.

For the fundamental solutions of classes ℂ-1 and ℂ1, v2 - 1 ⩵ 0, so Equation (34) simply gives u ⩵±a, 
which is not helpful.  To get a constraint involving p we need to use the second Pell generation.
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For the fundamental solutions of classes ℂ-1 and ℂ1, v2 - 1 ⩵ 0, so Equation (34) simply gives u ⩵±a, 
which is not helpful.  To get a constraint involving p we need to use the second Pell generation.

If (h, k) is the primary solution to the Pell equation, the Pell recurrence is

un+1 ⩵ h un + D k vn ⩵ h un + a2 - p2 k vn
vn+1 ⩵ k un + h vn

This gives the second generation solution in ℂ-1 as

In[613]:= Simplifyh u + a2 - p2 k v, k u + h v /. {u → a, v → -1}

Out[613]= a h - a2 k + k p2, -h + a k

The two terms on the LHS of Equation (34) for this solution are

In[614]:= Simplify{a v - u, a v + u} /. u → h a + k p2 - a2, v → -h + k a

Out[614]= -2 a h + 2 a2 k - k p2, k p2

This shows that a v + u is a multiple of p2.

The second generation solution in ℂ1 is

In[615]:= Simplifyh u + a2 - p2 k v, k u + h v /. {u → a, v → 1}

Out[615]= a h + a2 k - k p2, h + a k

The two terms on the LHS of Equation (34) for this solution are

In[616]:= Simplify{a v - u, a v + u} /. u → h a + k -p2 + a2, v → h + k a

Out[616]= k p2, 2 a h + 2 a2 k - k p2

This shows that a v - u is a multiple of p2.

So both classes give one term that is a multiple of p2.  The other term is not, as we prove later.  We have 
not shown that this holds for succeeding generations, though it must.

If one term is a multiple of p2, the solution must be in a trivial class12.5.4 

First, assume that a v + u ⩵ n p2, where n is an integer.  We can show that this solution belongs to class 
ℂ-1.  Use Equation (26), replacing the denominator by the equivalent f :

r →
u1 u2 - D v1 v2

f
,
s → u1 v2 - u2 v1

f


r →
u1 u2 - a2 - p2 v1 v2

p2
, s →

u1 v2 - u2 v1

p2


Set (u1, v1) ⩵ (a, -1), the fundamental solution of class ℂ-1.  Set (u2, v2) ⩵ (u, v) with u ⩵ n p2 - a v.
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In[617]:= Simplify

r →
u1 u2 - a2 - p2 v1 v2

p2
, s →

u1 v2 - u2 v1

p2
 /. u1 → a, v1 → -1, u2 → n p2 - a v, v2 → v

Out[617]= {r → a n - v, s → n}

Both r and s are integer, so this shows (u, v) belongs to the same class as (a, -1), namely ℂ-1.

Now show it for the conjugate class.  Assume a v - u ⩵ n p2.

In[618]:= Simplify

r →
u1 u2 - a2 - p2 v1 v2

p2
, s →

u1 v2 - u2 v1

p2
 /. u1 → a, v1 → 1, u2 → -n p2 + a v, v2 → v

Out[618]= {r → -a n + v, s → n}

Again, integer, so if a v - u ⩵ n p2, the solution is in ℂ1.

Both terms cannot be divisible by p12.5.5 

Note we are not assuming p prime for this section of the proof.

Suppose that each of the terms on the LHS of Equation (34) is divisible by p.  We can write

a v + u ⩵ d1 p, a v - u ⩵ d2 p

where d1 d2 ⩵ v2 - 1.  Adding,

2 a v ⩵ (d1 + d2) p

Subtracting,

2 u ⩵ (d1 - d2) p

If p is odd, and using gcd(a, p) ⩵ 1, these imply that both u and v are multiples of p, contradicting the 
assumption that they are relatively prime.  If p > 2 is even, then both u and v are multiples of p /2, again 
contradicting the assumption that they are relatively prime.

If p is composite, it is possible for one term to be divisible by p.  If d is a divisor of p,  1 < d < p, then one 
term can be divisible by p d, and the other term divisible by p /d.  See the Examples section below.

If p is prime, the only partitioning allowed is for one term to be a multiple of p2 and the other not 
divisible by p.  We showed that this implies that any solution is a member of class ℂ-1 or ℂ1.

This concludes the proof that for prime p, the only solutions are those in the three classes to which the 
trivial solutions belong.

Examples

◼ An example where p is prime: 5 /11.  a ⩵ q - p ⩵ 6. 
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In[619]:= uvGetClasses[solveuvByRecursiveReduction[5 / 11]]

Out[619]= {{5, 0}, {6, -1}, {6, 1}}

Find the next generation.  Get (h, k).

In[620]:= D5o11 = q (q - 2 p) /. {p → 5, q → 11}

Out[620]= 11

In[621]:= solvePell[11]

Out[621]= {10, 3}

The 2nd generation from (a, -1) is

In[622]:= h a + k p2 - a2, -h + k a /. {p → 5, a → 6, h → 10, k → 3}

Out[622]= {27, 8}

Calculate a v ± u directly:

In[623]:= {a v + u, a v - u} /. {a → 6, u → 27, v → 8}

Out[623]= {75, 21}

Calculate using the formulas in terms of h, k:

In[624]:= k p2, -k p2 - 2 h a + 2 k a2 /. {p → 5, a → 6, h → 10, k → 3}

Out[624]= {75, 21}

In[625]:= FactorInteger /@ %

Out[625]= {{{3, 1}, {5, 2}}, {{3, 1}, {7, 1}}}

Thus

a v + u ⩵ 75 ⩵ 3 p2, a v - u ⩵ 21 ⩵ 3 × 7

In[626]:= v2 - 1 /. v → 8

Out[626]= 63

So Equation (34) is

(a v + u) (a v - u) ⩵ v2 - 1 p2

75 × 21 ⩵ 63 × 25
3 × 25 × 21 ⩵ 63 × 25

The 2nd generation from (a, 1) is

In[627]:= h a + k -p2 + a2, h + k a /. {p → 5, a → 6, h → 10, k → 3}

Out[627]= {93, 28}

Calculate a v ± u directly:

In[628]:= {a v + u, a v - u} /. {a → 6, u → 93, v → 28}

Out[628]= {261, 75}
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Calculate using the formulas in terms of h, k:

In[629]:= -k p2 + 2 h a + 2 k a2, k p2 /. {p → 5, a → 6, h → 10, k → 3}

Out[629]= {261, 75}

In[630]:= FactorInteger /@ %

Out[630]= {{{3, 2}, {29, 1}}, {{3, 1}, {5, 2}}}

a v + u ⩵ 32 × 29, a v - u ⩵ 75 ⩵ 3 p2

In[631]:= v2 - 1 /. v → 28

Out[631]= 783

In[632]:= FactorInteger[%]

Out[632]= {{3, 3}, {29, 1}}

So Equation (34) is

(a v + u) (a v - u) ⩵ v2 - 1 p2

261 × 75 ⩵ 783 × 25
261 × 3 × 25 ⩵ 783 × 25

◼ Now a case in which p is not prime, 6 /17, a ⩵ 11.

In[633]:= uvGetClasses[solveuvByReduction[6 / 17]]

Out[633]= {{6, 0}, {11, -1}, {11, 1}, {74, -8},
{74, 8}, {249, -27}, {249, 27}, {839, -91}, {839, 91}}

The relatively prime pair of solutions other than the trivial one is {839, ±91}.

In[634]:= D6o17 = q (q - 2 p) /. {p → 6, q → 17}

Out[634]= 85

In[635]:= solvePell[85]

Out[635]= {285769, 30996}

First, look at the solutions in the trivial classes ℂ-1 and ℂ1.

The 2nd generation from (a, -1) is

In[636]:= h a + k p2 - a2, -h + k a /. {p → 6, a → 11, h → 285769, k → 30996}

Out[636]= {508799, 55187}

Calculate a v ± u directly:

In[637]:= {a v + u, a v - u} /. {a → 11, u → 508799, v → 55187}

Out[637]= {1115856, 98258}

Calculate using the formulas in terms of h, k:
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In[638]:= k p2, -k p2 - 2 h a + 2 k a2 /. {p → 6, a → 11, h → 285769, k → 30996}

Out[638]= {1115856, 98258}

In[639]:= FactorInteger /@ %

Out[639]= {{{2, 4}, {3, 5}, {7, 1}, {41, 1}}, {{2, 1}, {73, 1}, {673, 1}}}

Thus

a v + u ⩵ 22 × 35 × 7 × 41 ⩵ 62 × 33 × 7 × 41, a v - u ⩵ 2 × 73 × 673

So a v + u is a multiple of 62 but a v - u has only one divisor in common with 6.

In[640]:= {1115856, 98258}  62

Out[640]= 30996,
49 129

18


The 2nd generation from (a, 1) is

In[641]:= h a + k -p2 + a2, h + k a /. {p → 6, a → 11, h → 285769, k → 30996}

Out[641]= {5778119, 626725}

Calculate a v ± u directly:

In[642]:= {a v + u, a v - u} /. {a → 11, u → 5778119, v → 626725}

Out[642]= {12672094, 1115 856}

Calculate using the formulas in terms of h, k:

In[643]:= -k p2 + 2 h a + 2 k a2, k p2 /. {p → 6, a → 11, h → 285769, k → 30996}

Out[643]= {12672094, 1115 856}

In[644]:= FactorInteger /@ %

Out[644]= {{{2, 1}, {829, 1}, {7643, 1}}, {{2, 4}, {3, 5}, {7, 1}, {41, 1}}}

Thus

a v + u ⩵ 2 × 829 × 7643, a v - u ⩵ 24 × 35 × 7 × 41 ⩵ 6 × 22 × 33 × 7 × 41

So a v - u is a multiple of 62 while a v + u has only a divisor of 2 in common with 6.

In[645]:= {12672094, 1115 856}  62

Out[645]= 
6336047

18
, 30996

Turning now to the solutions (839, ±91), which are not in classes ℂ-1 or ℂ1.

In[646]:= {a v + u, a v - u} /. {a → 11, u → 839, v → 91}

Out[646]= {1840, 162}

In[647]:= FactorInteger /@ %

Out[647]= {{{2, 4}, {5, 1}, {23, 1}}, {{2, 1}, {3, 4}}}
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a v + u ⩵ 24 × 5 × 23, a v - u ⩵ 2 × 34 ⩵ 6 × 33

Thus a v - u is a multiple of 6 but not of 62, while a v + u has only a divisor of 2 in common with 6.  Nei-
ther term is divisible by p2.

In[648]:= {1840, 162}  62

Out[648]= 
460

9
,
9

2


The other member of the class is (839, -91).  It gives negative terms in Equation (34) so use their abso-
lute values.

In[649]:= Abs[{a v + u, a v - u} /. {a → 11, u → 839, v → -91}]

Out[649]= {162, 1840}

In[650]:= FactorInteger /@ %

Out[650]= {{{2, 1}, {3, 4}}, {{2, 4}, {5, 1}, {23, 1}}}

In[651]:= {162, 1840}  62

Out[651]= 
9

2
,
460

9


Neither term is a multiple of 62.  In this case it is a v + u that is a multiple of 6 and a v - u is only a multi-
ple of 2.

In[652]:= v2 - 1 /. v → 91

Out[652]= 8280

In[653]:= FactorInteger[%]

Out[653]= {{2, 3}, {3, 2}, {5, 1}, {23, 1}}

Then Equation (34) is

162 × 1840 ⩵ 8280 × 36
2 × 34 24 × 5 × 23 ⩵ 23 × 32 × 5 × 23 22 × 32

25 × 34 × 5 × 23 ⩵ 25 × 34 × 5 × 23

Let’s look at how v2 - 1 ⩵ (v - 1) (v + 1) matches up with the terms in the numerator:

In[654]:= FactorInteger[90]

Out[654]= {{2, 1}, {3, 2}, {5, 1}}

In[655]:= FactorInteger[92]

Out[655]= {{2, 2}, {23, 1}}

So neither v - 1 nor v + 1 divides either a v - u or a v + u separately.

These examples illustrate how for the trivial class, one of the two terms a v ± u is a multiple of p2.  For 
other classes, the divisors of p2 are spread between the two terms such that one term is not a multiple 
of p.
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These examples illustrate how for the trivial class, one of the two terms a v ± u is a multiple of p2.  For 
other classes, the divisors of p2 are spread between the two terms such that one term is not a multiple 
of p.

Generalizing the partitioning constraint12.5.6 

The result of Section 12.5.5 can be generalized to composite p.  Suppose p ⩵ p1 p2 where p1 and p2 are 
divisors of p with 1 < p1,2 < p.  Suppose the terms on the LHS of Equation (34) partition as

a v + u ⩵ d1 p1, a v - u ⩵ d2 p2 p ⩵ d2 p1 p2
2

where d1 d2 ⩵ v2 - 1.  Adding,

2 a v ⩵ d1 + d2 p2
2 p1

Subtracting,

2 u ⩵ d1 - d2 p2
2 p1

If p1 ⩵ 2, these reduce to

a v ⩵ d1 + d2 p2
2

u ⩵ d1 - d2 p2
2

which do not constrain gcd(u, v).

If p1 > 2, then u, v have a common divisor of p1 (if odd) or p1 /2 (if even).  Therefore this partitioning is 
disallowed if p1 > 2.

The following partitioning is allowed if gcd(p1, p2) ⩵ 1:

a v + u ⩵ d1 p1
2, a v - u ⩵ d2 p2

2

These results are not very useful for ruling out solutions, but they do put some constraints.  For 
instance, for p ⩵ 9, the only partitionings of p2 are

1, 34, 3, 32, 32, 32

Only the first is allowable.  So ratios with p ⩵ 9 have no other relatively prime solutions besides those 
in ℂ-1 and ℂ1.  They may, and often do, have solutions with gcd of 3.  For example, the last two here:

In[656]:= uvGetClasses[solveuvByRecursiveReduction[9 / 19]]

Out[656]= {{9, 0}, {10, -1}, {10, 1}, {66, -15}, {66, 15}}

If p ⩵ 4, the only solution classes are the trivial-
solution classes

12.6  

(To avoid an overly lengthy section title, the assumption that the case is hyperbolic with nonsquare D is 
implicit.)

The claim formally stated is:
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◼ If p ⩵ 4, q > 8, and D nonsquare, there are no solutions to Equation (2) except those arising from 
applying the Pell recurrence to the trivial solutions.  In other words, these cases have only the 3 
classes of solutions that always exist.

The proof has two parts:

1. If p ⩵ 4, q > 8, and D nonsquare, then the only relatively prime solutions are those belonging to 
classes ℂ-1 and ℂ1 (as defined in Section 12.5).  These are the solutions of Equation (11) directly.

2. If p ⩵ 4, q > 8, and D nonsquare, then there are no solutions with gcd(u, v) ⩵ 2.  These would be 
obtained from relatively prime solutions of Equation (11) divided by 4.

The other solutions arise from Equation (11) divided by 16.  These solutions necessarily belong to class 
ℂ0.

Proof that the relatively prime solutions for p ⩵ 4 belong to the trivial-
solution classes

12.6.1 

Suppose u2 - D v2 ⩵ p2 ⩵ 16, with gcd(u, v) ⩵ 1.  As in Section 12.5.2, define a ⩵ q - p, then 
D ⩵ a2 - p2 ⩵ a2 - 16.  Since gcd(a, p) ⩵ 1, here a must be odd, hence D odd.  Then u2 - D v2 ⩵ 16 
requires that u, v be of the same parity.  They cannot both be even, since they are relatively prime.  
Hence both u and v are odd.

In Section 12.5.2 we showed that Equation (11) can be rewritten in factored form (Equation (34)):

(a v - u) (a v + u) ⩵ v2 - 1 p2 ⩵ 16 v2 - 1

In Section 12.5.4 we showed that if one of the terms a v - u or a v + u is a multiple of p2, then (u, v) ∈ ℂ±1, 
and in Section 12.5.5 we showed that both terms cannot simultaneously be multiples of p.  These 
results hold for composite p.  Therefore, the only partitioning of p2 between the two terms that can give 
a solution not in a trivial class is if one term is divisible by a non-trivial divisor d of p but not by p itself, 
and the other term is divisible by p2 d but not by p2.  The only non-trivial divisor of 4 is 2.  Let

a v - u ⩵ 2 d1, a v + u ⩵ 8 d2

where d1 d2 ⩵ v2 - 1.  Both d1 and d2 must be odd to prevent a v - u being a multiple of 4 and a v + u a 
multiple of 16.  But d1 d2 ⩵ v2 - 1 is even since v is odd, requiring d1 or d2 to be even.  Hence this parti-
tioning is disallowed, and the relatively prime solutions must be in ℂ-1 or ℂ1.

Proof that for p ⩵ 4 there are no solutions with gcd(u, v) ⩵ 212.6.2 

The other potential source of solutions that are not in a trivial class is from Equation (11) divided by 4.  
We can rule out the existence of solutions for p ⩵ 4.

Assume (2 u, 2 v) satisfies Equation (11), where gcd(u, v) ⩵ 1.  Then (u, v) satisfies Equation (11) divided 
by 4.

u2 - D v2 ⩵ 4

From the fact that D is odd and gcd(u, v) ⩵ 1 we again have that u and v must both be odd.
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Putting D ⩵ a2 - p2 ⩵ a2 - 16, we can factor Equation (11) as follows:

u2 - a2 - 16 v2 ⩵ 4

u2 - a2 v2 ⩵ 4 1 - 4 v2

(a v - u) (a v + u) ⩵ 4 4 v2 - 1

Here 4 v2 - 1 is odd, so the product of the two terms on the left is a multiple of 4 but not of 8.  They can 
partition with each being a multiple of 2, or with one being odd and the other a multiple of 4.  We deal 
with each possibility in turn.

Suppose the terms partition as

a v + u ⩵ 2 d1, a v - u ⩵ 2 d2

where d1 d2 ⩵ 4 v2 - 1.  Since 4 v2 - 1 is odd, both d1 and d2 must be odd.  Adding,

2 a v ⩵ 2 (d1 + d2)
a v ⩵ (d1 + d2)

The sum d1 + d2 is even, and since a is odd, v must be even, contradicting what was shown above.

Subtracting,

2 u ⩵ 2 (d1 - d2)
u ⩵ (d1 - d2)

Again, this is even, contradicting u odd.

The other partitioning is

a v + u ⩵ d1, a v - u ⩵ 4 d2

Since a v and u are odd, their sum is even, requiring d1 to be even, a contradiction.

Hence neither partitioning is allowed, and there can therefore be no solutions.  This concludes the 
proof that for p ⩵ 4, p /q < 1 /2, and D nonsquare, the only solutions are those in the three trivial classes.

Solving using Mathematica13 
Mathematica is able to find solutions when they exist, working directly with x, y numbers of red and 
blue balls.  Individual solutions, e.g. for p /q ⩵ 4 /11:

In[657]:= FindInstance[{probdifferent[{x, y}] ⩵ 4 / 11, x > 0, y > 0}, {x, y}, Integers]

Out[657]= {{x → 1072, y → 3417}}

Constraining the solutions to be positive excluded inadmissible trivial and negative solutions.

A case that has only one distinct admissible solution:

In[658]:= FindInstance[{probdifferent[{x, y}] ⩵ 126 / 247, x > 0, y ≥ x}, {x, y}, Integers, 2]

Out[658]= {{x → 18, y → 21}}

Admissible solutions do not always exist, e.g. for p /q ⩵ 4 /9.
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In[659]:= FindInstance[{probdifferent[{x, y}] ⩵ 4 / 9, x > 0, y > 0}, {x, y}, Integers]

Out[659]= {}

Mathematica only gives the empty set as a result when it can prove there are no solutions.

These results are not systematic.  Mathematica can also give a formula for systematically finding all 
solutions.

In[660]:= mmareduce4o11 = Reduce[probdifferent[{x, y}] ⩵ 4 / 11 && x > 0 && y > 0, {x, y}, Integers]

Out[660]= N1 ∈ ℤ && N1 ≥ 1 &&

x ⩵
1

132
-7 22 +

1

2
-55 23 - 4 33 

2 N1
+ 9 33 23 - 4 33 

2 N1
- 55 23 + 4 33 

2 N1
-

9 33 23 + 4 33 
2 N1

 + 33 2 +
1

6
-27 23 - 4 33 

2 N1
+

5 33 23 - 4 33 
2 N1

- 27 23 + 4 33 
2 N1

- 5 33 23 + 4 33 
2 N1

 &&

y ⩵
1

33
-22 +

1

2
55 23 - 4 33 

2 N1
- 9 33 23 - 4 33 

2 N1
+

55 23 + 4 33 
2 N1

+ 9 33 23 + 4 33 
2 N1

 ||

N1 ∈ ℤ && N1 ≥ 1 && x ⩵
1

132
-7 22 - 11 23 - 4 33 

2 N1
+ 33 23 - 4 33 

2 N1
-

11 23 + 4 33 
2 N1

- 33 23 + 4 33 
2 N1

 + 33 2 +
1

3
-3 23 - 4 33 

2 N1
+

33 23 - 4 33 
2 N1

- 3 23 + 4 33 
2 N1

- 33 23 + 4 33 
2 N1

 &&

y ⩵
1

33
-22 + 11 23 - 4 33 

2 N1
- 33 23 - 4 33 

2 N1
+ 11 23 + 4 33 

2 N1
+

33 23 + 4 33 
2 N1

 ||

N1 ∈ ℤ && N1 ≥ 1 && x ⩵
1

132
-7 22 - 11 23 - 4 33 

2 N1
- 33 23 - 4 33 

2 N1
-

11 23 + 4 33 
2 N1

+ 33 23 + 4 33 
2 N1

 + 33 2 +
1

3
3 23 - 4 33 

2 N1
+

33 23 - 4 33 
2 N1

+ 3 23 + 4 33 
2 N1

- 33 23 + 4 33 
2 N1

 &&

y ⩵
1

33
-22 + 11 23 - 4 33 

2 N1
+ 33 23 - 4 33 

2 N1
+ 11 23 + 4 33 

2 N1
-

33 23 + 4 33 
2 N1

 ||

N1 ∈ ℤ && N1 ≥ 1 && x ⩵
1

132
-7 22 - 11 23 - 4 33 

2 N1
- 33 23 - 4 33 

2 N1
-

11 23 + 4 33 
2 N1

+ 33 23 + 4 33 
2 N1

 + 33 2 +
1

3
-3 23 - 4 33 

2 N1
-

33 23 - 4 33 
2 N1

- 3 23 + 4 33 
2 N1

+ 33 23 + 4 33 
2 N1

 &&
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Out[660]=

y ⩵
1

33
-22 + 11 23 - 4 33 

2 N1
+ 33 23 - 4 33 

2 N1
+ 11 23 + 4 33 

2 N1
-

33 23 + 4 33 
2 N1

 ||

N1 ∈ ℤ && N1 ≥ 1 && x ⩵
1

132
-7 22 - 11 23 - 4 33 

2 N1
+ 33 23 - 4 33 

2 N1
-

11 23 + 4 33 
2 N1

- 33 23 + 4 33 
2 N1

 + 33 2 +
1

3
3 23 - 4 33 

2 N1
-

33 23 - 4 33 
2 N1

+ 3 23 + 4 33 
2 N1

+ 33 23 + 4 33 
2 N1

 &&

y ⩵
1

33
-22 + 11 23 - 4 33 

2 N1
- 33 23 - 4 33 

2 N1
+ 11 23 + 4 33 

2 N1
+

33 23 + 4 33 
2 N1

 || N1 ∈ ℤ && N1 ≥ 1 &&

x ⩵
1

132
33 2 +

1

6
-27 23 - 4 33 

2 N1
- 5 33 23 - 4 33 

2 N1
- 27 23 + 4 33 

2 N1
+

5 33 23 + 4 33 
2 N1

 - 7 22 +
1

2
-55 23 - 4 33 

2 N1
-

9 33 23 - 4 33 
2 N1

- 55 23 + 4 33 
2 N1

+ 9 33 23 + 4 33 
2 N1

 &&

y ⩵
1

33
-22 +

1

2
55 23 - 4 33 

2 N1
+ 9 33 23 - 4 33 

2 N1
+

55 23 + 4 33 
2 N1

- 9 33 23 + 4 33 
2 N1



In[661]:= Length[mmareduce4o11]

Out[661]= 6

Not pretty.  There are 6 families of solutions.  I did not use Simplify because it groups two y solu-
tions for each x solution, making the next steps more complicated.  But Simplify does make the 
expressions less fearsome, so I use it in the next step.

Now pick out the x and y solutions from this mess.  The first index selects one solution, the next index 
selects x or y, and the third index selects the RHS of the equals sign.
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In[662]:= mmaxsolns4o11 =

Table[Simplify[mmareduce4o11[[i]][[3]][[2]]], {i, Length[mmareduce4o11]}]

Out[662]= 
1

33
-22 - 23 - 4 33 

2 N1
-11 + 33  + 11 + 33  23 + 4 33 

2 N1
,

1

33
-22 + 23 - 4 33 

2 N1
11 + 33  - -11 + 33  23 + 4 33 

2 N1
,

1

66
-44 + 55 - 9 33  23 + 4 33 

2 N1
+ 23 - 4 33 

2 N1
55 + 9 33 ,

1

33
-22 - 23 - 4 33 

2 N1
-11 + 33  + 11 + 33  23 + 4 33 

2 N1
,

1

66
-44 + 55 - 9 33  23 - 4 33 

2 N1
+ 23 + 4 33 

2 N1
55 + 9 33 ,

1

33
-22 + 23 - 4 33 

2 N1
11 + 33  - -11 + 33  23 + 4 33 

2 N1


In[663]:= mmaysolns4o11 =

Table[Simplify[mmareduce4o11[[i]][[4]][[2]]], {i, Length[mmareduce4o11]}]

Out[663]= 
1

66
-44 + 55 - 9 33  23 - 4 33 

2 N1
+ 23 + 4 33 

2 N1
55 + 9 33 ,

1

33
-22 - 23 - 4 33 

2 N1
-11 + 33  + 11 + 33  23 + 4 33 

2 N1
,

1

33
-22 + 23 - 4 33 

2 N1
11 + 33  - -11 + 33  23 + 4 33 

2 N1
,

1

33
-22 + 23 - 4 33 

2 N1
11 + 33  - -11 + 33  23 + 4 33 

2 N1
,

1

33
-22 - 23 - 4 33 

2 N1
-11 + 33  + 11 + 33  23 + 4 33 

2 N1
,

1

66
-44 + 55 - 9 33  23 + 4 33 

2 N1
+ 23 - 4 33 

2 N1
55 + 9 33 

Now calculate the first 5 families of solutions.  Use Flatten to remove the grouping into 6 solutions per 
family.

In[664]:= mmaxvalues4o11 = Flatten[Table[Simplify[mmaxsolns4o11 /. C[1] → n], {n, 1, 5}]]

Out[664]= {1072, 336, 105, 1072, 3417, 336, 2267616, 711712, 223377, 2267616, 7224945,
711712, 4793740560, 1504560 240, 472220281, 4793740560, 15273531721,
1504560240, 10 133965 277632, 3180639637056, 998273452065, 10133965277632,
32288238834657, 3180 639637056, 21423197803174896, 6723870688177552,
2110349605446 537, 21423197803174896, 68257321622934585, 6723870688177552}
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In[665]:= mmayvalues4o11 = Flatten[Table[Simplify[mmaysolns4o11 /. C[1] → n], {n, 1, 5}]]

Out[665]= {3417, 1072, 336, 336, 1072, 105, 7224945, 2267616, 711712, 711712, 2267616,
223377, 15273 531721, 4793740560, 1504560240, 1504560240, 4793740560,
472220281, 32 288238834657, 10133965277632, 3180639637056, 3180639637056,
10133965277632, 998273452 065, 68257321622934585, 21423197803174896,
6723870688177 552, 6723870688177552, 21423197803174896, 2110349605446537}

Now display the same results in a nice tabular form, sorted from smallest to largest.  Sort the individual 
solutions and remove duplicates to obtain only distinct solutions with x ≤ y.

In[666]:= TableForm[Sort[DeleteDuplicates[
Table[Sort[{mmaxvalues4o11[[i]], mmayvalues4o11[[i]]}],
{i, 1, Length[mmaxvalues4o11]}]]], TableHeadings → {None, {x, y, "p/q"}}]

Out[666]//TableForm=

x y
105 336
336 1072
1072 3417
223377 711712
711712 2267616
2 267616 7224945
472220281 1504560240
1 504560240 4793740560
4 793740560 15273531721
998273452065 3180639637056
3 180639637 056 10133965277632
10133965277632 32288238834657
2 110349605 446 537 6723870688177552
6 723870688 177 552 21423197803174896
21423197803174 896 68257321622934585

Open questions14 
The most important questions, about the existence of solutions and methods that can find all solu-
tions, have been answered.  I am sure there are many more interesting features of this problem that 
remain to be discovered.  Here are a few possible directions to explore.  I would welcome hearing of 
any results you find.

Special cases14.1  
We examined some special cases for which solutions could be found without sophisticated methods.  
The Varsity Math case p /q ⩵ 1 /2 is one.  In Sections 6.3 and 12.4 we examined the special cases p ⩵ 1 
and p ⩵ 2.  Like all p, these have a trivial solution (u, v) ⩵ (q - p, 1), but unlike p > 2, for each of these 
there is a recurrence that generates all solutions without solving the Pell equation.

In the elliptical regime, the family of probability ratios of the form p / (2 p - 1) have three solutions at 
and adjacent to the far vertex, as discussed in Section 5.2.1 and Section 8.5.  This does not say anything 
about the possible existence of other solutions.  In Section 8.5.2 we saw some sub-cases that have 
solutions around the midsection of the ellipse.

odds-inversion.nb     169



In the elliptical regime, the family of probability ratios of the form p / (2 p - 1) have three solutions at 
and adjacent to the far vertex, as discussed in Section 5.2.1 and Section 8.5.  This does not say anything 
about the possible existence of other solutions.  In Section 8.5.2 we saw some sub-cases that have 
solutions around the midsection of the ellipse.

In the hyperbolic regime, Section 11.15 analyzed a subset of ratios of the form p / (2 p + 1) for which 
three solutions can be found from simple formulas.  There does not seem to be a simple formula giving 
admissible solutions for all ratios of this form.  (They do have integer solutions at the vertex 
(x, y) ⩵ (-p, -p) and its neigbors 1 unit away.)

Are there other families of probability ratios that similarly guarantee certain solutions?

Properties of the recycling recurrence14.2  
Recycling triplets are common for cases in the hyperbolic regime, since, as shown in Section 12.3 they 
always arise by applying the Pell recurrence to the three trivial solutions.  For p ⩵ 1 and p ⩵ 2, the 
recycling recurrence yields an infinite series of solutions.  But for p > 2, I have not encountered any 
cases for which the solutions include a series of more than 3 solutions related by the recycling recur-
rence.  Applying the recycling recurrence to the end members of these series in either direction yields 
fractional values.  For some cases there are also singlets, solutions that are not related to any other by 
the recycling recurrence.  There are also doublets, pairs of solutions that are recycling neighbors 
without a third.  Triplets can arise among solutions that are not the in the trivial-solution classes.

Can it be proved that there are no quartets or larger series of recycling neighbors for p > 2?
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