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Introduction
“From a bag containing red and blue balls, two are removed 
at random. The chances are 50-50 that they will differ in color.
What were the possible numbers of balls initially in the bag?”
This is the National Museum of Mathematics’ Varsity Math puz-
zle 117.

We will solve that problem and then explore the solutions for 
other values of the probability.



◼ The results of this exploration are in an article accepted for publication in the American 
Mathematical Monthly, “Solution of an Odds Inversion Problem,” by Robert K. Moniot, 2020 (to 
appear).

Solution of Varsity Math problem
Let r, b be the numbers of red and blue balls, respectively.  Probability of picking red, then blue:

P (red, blue) ⩵
r

b + r
·

b

b + r - 1

Probability of picking blue, then red:

P (blue, red) ⩵
b

b + r
·

r

b + r - 1

These are equal.  So, probability of picking balls of different colors are:

P (red, blue) + P (blue, red) ⩵
2 b r

(b + r) (b + r - 1)

Equate this to 50% or 1 /2.

2 b r

(b + r) (b + r - 1)
⩵

1

2

Cross multiply and expand:

4 b r ⩵ (b + r) (b + r - 1) ⩵ b2 + 2 b r + r2 - (b + r)
b2 - 2 b r + r2 ⩵ b + r
(b - r)2 ⩵ b + r

This implies total number of balls b + r must be a square.  Call it n2.  Then

b + r ⩵ n2, b - r ⩵ ±n

Taking the positive branch so b ≥ r, and adding and subtracting these, we obtain

2 b ⩵ n2 + n ⇒ b ⩵
n2 + n

2
2 r ⩵ n2 - n ⇒ r ⩵

n2 - n

2

So r and b are successive triangular numbers, whose sum is square.  That’s pretty cool!
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First 10 solutions

In[$]:= TableFormTable
n2 - n

2
,
n2 + n

2
, n2, {n, 1, 10},

TableHeadings → {None, {"r", "b", "r+b"}}

Out[$]//TableForm=

r b r+b
0 1 1
1 3 4
3 6 9
6 10 16
10 15 25
15 21 36
21 28 49
28 36 64
36 45 81
45 55 100

The first row formally satisfies the equation, but is not admissible since there need to be at least 2 balls.

Generalizing the problem
That was fun.  Now, what can we say about other odds than 50-50?

We seek to answer the questions:

◼ For a given odds, is there a solution to the problem?  That is, does there exist a pair of numbers of red 
and blue balls that produce a given probability of drawing balls of different colors?

◼ If there is a solution, is the number of solutions finite or infinite?

◼ For instances with a finite number of solutions, is there a way to list them all?

◼ For instances with an infinite number of solutions, can we obtain a formula or recurrence that will 
generate as many solutions as desired?

◼ Are the methods used able to find all solutions?  Or do they miss some?

All of these questions can be answered very satisfactorily.

Some examples
For the following probability ratios there is no solution.

4
9

5
6

3
4

3
8

98 058
176501

For these probabilities there are only these solutions:
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8
15 →

2 4
4 6
7 8
8 8

12
25 → 9 16

For the following probabilities there are an infinite number of solutions:

Odds Smallest Solutions

2 / 7

1 6
6 30
30 145
145 696
696 3336

6 / 13

4 9
9 18
18 34
70 126
126 225

4 / 51
281063265339959257 6593004860639355312
6593004860639355312 154654550959684890576
154654550959684890576 3627788942691955573225

Notice that a number from one solution often appears in the next.

Diophantine equation
Let the given probability be p /q, in lowest terms.  We are solving

2 b r

(b + r) (b + r - 1)
⩵

p

q

Cross multiplying and rearranging, we obtain

p b2 - 2 (q - p) b r + p r2 - p b - p r ⩵ 0 (1)

This is a Diophantine equation, i.e. an equation in integers.

We will call any pair of integers (r, b) satisfying Equation (1) a formal solution.

Not all formal solutions are admissible as solutions to the original problem.    For a solution to be 
admissible it must satisfy

r ≥ 0, b ≥ 0

(we cannot have a negative number of balls) and

r + b ≥ 2

(we need at least two balls in the bag in order to be able to draw two out).

Trivial solutions
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Trivial solutions
Equation (1) has three trivial solutions, i.e. formal solutions that hold regardless of the values of p and 
q:

(r, b) ⩵ (0, 1), (0, 0), (1, 0)

These are not admissible solutions, but they will prove useful in finding admissible solutions.  
When plugged into the original odds equation,

2 b r

(b + r) (b + r - 1)
⩵

p

q

they yield p /q ⩵ 0 /0.  This is undefined, which is how they are able to satisfy the equation for any 
values of p and q.

Symmetry
Equation (1) is symmetric in r and b:

If (r, b) is a solution then (b, r) is also.

To list just distinct solutions, we impose the condition r ≤ b.  (We already did that in solving the Varsity 
Math problem by only using the positive sign on n.)

Reverse search
To get a feel for the problem, I wrote a Python program to generate the odds for all values of red, blue 
less than 1000.

Pseudocode:
for b in {1..max}
  for r in {1..b}
    odds=(2 r b)/((r+b)(r+b-1))
    append {odds,{r,b}} to result
sort result by odds

Python has a Fraction class and unlimited-size integers, which make this easy.

The results showed interesting patterns, such as the reappearance of a number from one solution in 
the next noted earlier.

The recycling recurrence
Often solutions for a particular p /q occur in series in which the same number appears in two solutions, 
once as the smaller value and once as the larger, i.e.

(r, b), (b, x)

where r < b < x.  (The Varsity Math case shows this pattern, repeating indefinitely.)

By equating the probability ratios for these two solutions and imposing the condition r ≠ x one obtains 
this formula:
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By equating the probability ratios for these two solutions and imposing the condition r ≠ x one obtains 
this formula:

In[$]:= Solve
2 r b

(r + b) (r + b - 1)
⩵

2 b x

(b + x) (b + x - 1)
, x ≠ r, x

Out[$]= x →
(-1 + b) b

r


I call this the recycling recurrence since the new solution re-uses one of the values in the old solution.

If r < b then the formula produces a larger solution, whereas if r ≥ b it goes the other direction.

The result x given by the formula is not necessarily integer.  One can show that if p ⩵ 1 or p ⩵ 2, the 
recurrence produces integers ad infinitum.  For p > 2, it  goes fractional after a few steps, with only 2 or 
3 integer solutions in any series.

Recycling recurrence examples
Here is an example of a series of solutions for the probability of drawing balls of different color equal to 
2 /7.

In[$]:= TableForm[RecurrenceTable[{r[i + 1] ⩵ b[i],
b[i + 1] ⩵ b[i] (b[i] - 1) / r[i], r[1] ⩵ 1, b[1] ⩵ 6}, {r[i], b[i]}, {i, 6}],

TableHeadings → {None, {"r", "b"}}]
Out[$]//TableForm=

r b
1 6
6 30
30 145
145 696
696 3336
3336 15985

The recycling pattern continues indefinitely.

Here is an example of a series of solutions for which only three are integer pairs.  The probability ratio is 
10 /21:

In[$]:= TableForm[RecurrenceTable[{r[i + 1] ⩵ b[i],
b[i + 1] ⩵ b[i] (b[i] - 1) / r[i], r[1] ⩵ 2 / 5, b[1] ⩵ 2}, {r[i], b[i]}, {i, 5}],

TableHeadings → {None, {"r", "b"}}]
Out[$]//TableForm=

r b
2
5

2

2 5
5 10
10 18

18 153
5

Change of variables

6     redandblueballspuzzle-digest.nb



Change of variables
Equation (1) simplifies considerably if we change variables.  Let

t ⩵ b + r, v ⩵ b - r

Plug in, and after some algebra, Equation (1) becomes

(q - 2 p) t2 + 2 p t - q v2 ⩵ 0 (2)

Much simpler.  But we can do even better.

Complete the square on t.

To make the next steps clearer, set a ⩵ (q - 2 p):

a t2 + 2 p t - q v2 ⩵ 0

First step is to make the coefficient of t2 square by multiplying by a:

a2 t2 + 2 p a t - q a v2 ⩵ 0

Add p2 to both sides:

a2 t2 +2 p a t +p2 - q a v2 ⩵ p2

(a t + p)2 - q a v2 ⩵ p2

Put back  a ⩵ (q - 2 p) and let

u ⩵ a t + p ⩵ (q - 2 p) t + p

Then the equation becomes

u2 - q (q - 2 p) v2 ⩵ p2 (3)

We put Equations (1), (2) and (3) into formulas for convenient use later, with p and q as parameters.

In[$]:= rbequation[r_, b_] := p b2 - 2 (q - p) b r + p r2 - p b - p r ⩵ 0

In[$]:= tvequation[t_, v_] := (q - 2 p) t2 + 2 p t - q v2 ⩵ 0

In[$]:= uvequation[u_, v_] := u2 - q (q - 2 p) v2 ⩵ p2

The discriminant D
Set D ⩵ q(q - 2 p), and f ⩵ p2.  Then Equation (3) is

u2 - D v2 ⩵ f (4)

Call D the discriminant because it determines the character of the equation.

◼ D < 0 ⇒ ellipse

◼ D > 0 ⇒ hyperbola
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◼ If D ⩵ 0 Equation (4) breaks down.  Recall that in deriving Equation (3)  from Equation (2) (the t, v 
equation), we multiplied by a ⩵ (q - 2 p) to complete the square, so (3) is not valid when that is 0.  
Equation (2)  is a parabola for that case.  It was already solved as the Varsity Math problem, so no 
problem.

Character of equation vs p /q
D ⩵ q (q - 2 p)

◼ Elliptic: D < 0 ⇒ q < 2 p ⇒ p
q
> 1

2

◼ Parabolic: D ⩵ 0 ⇒ q ⩵ 2 p ⇒ p
q
⩵ 1

2

◼ Hyperbolic: D > 0 ⇒ q > 2 p ⇒ p
q
< 1

2

Elliptical case: D < 0
For the elliptic case I have not found any methods other than direct search, i.e. testing all possibilities.  
Since the ellipse is a finite curve, direct search can in principle find all solutions that exist.

It is helpful to graph an example.  Here is one, p /q ⩵ 8 /15, that has several integer solutions.  First we 
graph it in r-b space.  The grid lines show where solutions occur, for instance (4, 6).

In[$]:= Plot[b /. Solve[rbequation[r, b] /. {p → 8, q → 15}], {r, -1, 9},
PlotRange → {{-1, 9}, {-1, 9}}, AspectRatio → 1,
GridLines → {{2, 4, 6, 8}, {2, 4, 6, 8}}, AxesLabel → {"r", "b"}]

Out[$]=

Elliptical case, example plotted in t,v-space
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Elliptical case, example plotted in t,v-space
Now plot the p /q ⩵ 8 /15 example in t-v space.  This ellipse is aligned with the axes and is tangent to the 
horizontal axis.

In[$]:= Plot[t /. Solve[tvequation[t, v] /. {p → 8, q → 15}], {v, -5 / 2, 5 / 2},
PlotRange → {{-10, 10}, {-2, 18}}, AspectRatio → 1,
GridLines → {{-2, -1, 1, 2}, {6, 10, 15, 16}}, AxesLabel → {"v", "t"}]

Out[$]=

Elliptical case, example plotted in u-v space
Now plot the p /q ⩵ 8 /15 example in u-v space.  This ellipse is aligned with the axes and centered on the 
origin.
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In[$]:= Plot[u /. Solve[uvequation[u, v] /. {p → 8, q → 15}], {v, -5 / 2, 5 / 2},
PlotRange → {{-10, 10}, {-10, 10}}, AspectRatio → 1,
GridLines → {{-2, -1, 1, 2}, {-8, -7, -2, 2, 7, 8}}, AxesLabel → {"v", "u"}]

Out[$]=

Elliptical cases vs. p /q
Plot of ellipse in r-b space for a series of odds ratios of form p / (2 p - 1):
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In[$]:= listforplot = Table[{b /. Solve[rbequation[r, b] /. q → 2 p - 1, b]}, {p, 5}];
Plot[listforplot,
{r, -1 / 2, 11 / 2},
PlotRange → {{-1 / 2, 11 / 2}, {-1 / 2, 11 / 2}}, AspectRatio → 1,
PlotLegends → Table[p / (2 p - 1), {p, 5}], AxesLabel → {"r", "b"}]

Out[$]=

1 2 3 4 5
r

1

2

3

4

5

b

1
2
3

3
5

4
7

5
9

For p /q ⩵ 1, it is a circle.  As p /q → 1 /2, the ellipses elongate, approaching a parabola at p /q ⩵ 1 /2.

Elliptical cases in u-v space
Same set of cases plotted in u-v space.
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In[$]:= listforplot = Table[u /. Solve[uvequation[u, v] /. q → 2 p - 1, u], {p, 5}];
Plot[listforplot,
{v, -2, 2},
PlotRange → {{-11 / 2, 11 / 2}, {-11 / 2, 11 / 2}}, AspectRatio → 1,
PlotLegends → Table[p / (2 p - 1), {p, 5}], AxesLabel → {"v", "u"}]

Out[$]=

-4 -2 2 4
v

-4

-2

2

4

u

1
2
3

3
5

4
7

5
9

The widths grow slowly. This means a search on v is more efficient than a search on u or on r or b.

Symmetry allows the testing to be limited to positive u, v values (first quadrant arc).  Need to use both 
signs on u to get all solutions for t.  Can use only positive v to keep r ≤ b.

Elliptical case: range of r, b
p b2 - 2 (q - p) b r + p r2 - p b - p r ⩵ 0 (1, repeated)

Solve for the far endpoint where b ⩵ r:

p r2 - 2 (q - p) r2 + p r2 - p r - p r ⩵ 0
4 p r2 - 2 q r2 - 2 p r ⩵ 0
r ((2 p - q) r - p) ⩵ 0

rmax ⩵
p

2 p - q
⩵

p / q

2 p / q - 1

Solve for p /q value for a given rmax:
p

q
⩵

rmax
2 rmax - 1

For rmax ⩵ 5,  p /q ⩵ 5 /9.  For larger p /q ratios, solutions must have r, b < 5.  We can exhaustively list 
them.
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For rmax ⩵ 5,  p /q ⩵ 5 /9.  For larger p /q ratios, solutions must have r, b < 5.  We can exhaustively list 
them.

◼ Note: if q ⩵ 2 p - 1, then rmax ⩵ p.  This implies there are solutions for all probabilities of form 
p / (2 p - 1).  The recycling recurrence from (p, p) gives neighboring solutions (p - 1, p) and (p, p - 1).  
These three solutions at the far vertex of the ellipse are the symmetrical counterparts of the three 
trivial solutions around the origin.

Elliptical case: exhaustive enumeration
Table enumerating all distinct solutions for r, b ≤ 5:

In[$]:= TableForm[Table[{{r, b, 2 r b / ((r + b) (r + b - 1))}}, {b, 1, 5}, {r, 1, b}]]
Out[$]//TableForm=

1 1 1

1 2 2
3

2 2 2
3

1 3 1
2

2 3 3
5

3 3 3
5

1 4 2
5

2 4 8
15

3 4 4
7

4 4 4
7

1 5 1
3

2 5 10
21

3 5 15
28

4 5 5
9

5 5 5
9

Some of these ratios are below the threshold p /q ⩵ 5 /9 so the search is not exhaustive for them.

For ratios in the range 5 /9 to 1 the list is exhaustive.  These ratios are:
5

9
,

4

7
,

3

5
,

2

3
,

1

1

All of their solutions appear in this table.  No other ratios in this range have any solutions.

For example: 3 /4, 4 /5, 5 /6, 5 /7, 6 /7, 5 /8, 7 /8 all have no solution.

This covers nearly half the range of possible probabilities!

Elliptical case: direct search in u-v space
Maximum v is for u ⩵ 0:

In[$]:= Solve[uvequation[u, v] /. u → 0, v]

Out[$]= v → -
p

2 p q - q2
, v →

p

2 p q - q2


We choose the positive root,

vmax ⩵
p

q (2 p - q)
⩵

p / q

2 p / q - 1

For an ellipse that extends to a million red balls,
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p

q
⩵

rmax
2 rmax - 1

, rmax ⩵ 106 ⇒
p

q
⩵

106

2 × 106 - 1

(This is very close to 1 /2.)  Plugging this into the formula for vmax yields

In[$]:= Floor
p

q (2 p - q)
/. p → 106, q → 2 × 106 - 1

Out[$]= 707

Searching this range for solutions takes 0.04 seconds on my laptop.  The only solutions found are for 
the far endpoint (b, b) and adjacent (b - 1, b):

r b
999 999 1000000
1000000 1000000

◼ Even quite large solutions are within reach of direct search.

Hyperbolic case: D > 0
The hyperbolic case can be divided into two categories:

◼ D square: solution by factoring the equation

◼ D non-square: solution by continued fractions

Hyperbolic case, D square
If D is square, then Equation (4) can be factored:

u2 - D v2 ⩵ f → u - D v u + D v ⩵ f

Here D  is integer by assumption.  The two terms on the left must correspond to divisors of  f .

Let divisors of  f  be {d1, d2, ..., dk}.  Set

u - D v ⩵ di, u + D v ⩵
f

di

Solution:

u ⩵
f + di2

2 di
, v ⩵

f - di2

2 D di

Reject any solutions that are not integer.

Exchanging di and f /di simply changes the sign of v, so only the divisors di ≤ f  need to be tested.

Negative divisors simply change sign of u, v, so only positive divisors need to be tested.

At most one solution (u, v) for each divisor, so total number of solutions is finite.  Some ratios have no 
solutions.

Hyperbolic case, D square example: p /q ⩵ 12 /25
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Hyperbolic case, D square example: p /q ⩵ 12 /25
Here is an example that has an admissible solution.

D ⩵ q (q - 2 p) ⩵ 25 (25 - 24) ⩵ 25 ⩵ 52

f ⩵ p2 ⩵ 122 ⩵ 144

Divisors of f : {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144}

Too many for a demo.  Use only the one that gives a solution.

d ⩵ 2 ⇒ u ⩵
f + d2

2 d
⩵

144 + 4

2 × 2
⩵

148

4
⩵ 37, v ⩵

f - d2

2 D d
⩵

144 - 4

2 × 5 × 2
⩵

140

20
⩵ 7

t ⩵
u - p

q - 2 p
⩵

37 - 12

25 - 24
⩵ 25

r ⩵
t - v

2
⩵

25 - 7

2
⩵

18

2
⩵ 9, b ⩵

t + v

2
⩵

25 + 7

2
⩵

32

2
⩵ 16

Hyperbolic case, D square example: p /q ⩵ 4 /9
D ⩵ q (q - 2 p) ⩵ 9 (9 - 8) ⩵ 9 ⩵ 32

f ⩵ p2 ⩵ 42 ⩵ 16

Divisors of f : {1, 2, 4, 8, 16}.

Trying them all, one finds none lead to an admissible solution.
This case has no solutions.

Hyperbolic case, D nonsquare
u2 - D v2 ⩵ f ⩵ p2 (4, repeated)

Divide through by p2:

u

p

2
- D

v

p

2
⩵ 1, or x2 - D y2 ⩵ 1

This is known as the Pell equation.  It has been well studied for a few centuries.

When D > 0 is nonsquare, its solutions are found from x / y ⩵ a convergent of the continued fraction 

D .

These concepts are explained in the next few sections.

Continued fractions
Continued fraction of a real number r:
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r ⩵ a0 +
1

a1 + 1
a2+

1
...

where the ai are integers.  Continued fractions are usually written in the compact form

r ⩵ [a0, a1, a2, ...]

There is a simple algorithm to compute continued fractions.

If r is rational, the fraction terminates.  Otherwise it continues indefinitely.

If r is the irrational root of a quadratic equation with rational coefficients, the continued fraction 
repeats.

Convergents
Terminating the continued fraction at any point yields a rational number.

a0

a0 +
1

a1
⩵

a0 a1 + 1

a1

a0 +
1

a1 +
1
a2

=
a2 (a1 a0 + 1) + a0

a2 a1 + 1

...

These are called convergents of the continued fraction for r.

There is a simple algorithm to generate the sequence of convergents.

The convergents are the best rational approximations to r using a denominator of that size.  Example: 
22 /7 for π .

Pell equation
x2 - D y2 ⩵ 1

For D > 0 nonsquare, the Pell equation always has a nontrivial solution.  (Trivial solution is x ⩵±1, 
y ⩵ 0.)

The smallest nontrivial solution is given by setting x / y equal to the convergent of D  at the end of the 
first repeat cycle if the repeat cycle is even length; otherwise the end of the second cycle.

◼ Example: p /q ⩵ 4 /11,  D ⩵ 11 (11 - 2×4) ⩵ 33

In[$]:= Convergents 33 

Out[$]= 5, 6,
17

3
,
23

4
, 33 

Mathematica indicates the start of the repeat cycle by repeating the argument.  Show that this solution 
works:
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Mathematica indicates the start of the repeat cycle by repeating the argument.  Show that this solution 
works:

In[$]:= 232 - 33 × 42

Out[$]= 1

Solution:

x ⩵
u

p
⩵ 23, y ⩵

v

p
⩵ 4

Get u, v:

u ⩵ p x ⩵ 4 × 23 ⩵ 92, v ⩵ p y ⩵ 4 × 4 ⩵ 16

Map u back to t ⩵ r + b.

t ⩵
u - p

q - 2 p
⩵

92 - 4

11 - 2 × 4
⩵

88

3

Fractional, not admissible.  But don’t lose hope.

Formula to generate more solutions
If (x1, y1) is the smallest solution of the Pell equation, other solutions can be generated by

xn + yn D ⩵ x1 + y1 D 
n, n ⩵ 1, 2, ... (5)

When the expression on the RHS is expanded, after collecting terms it is always in the form of x + y D . 

◼ Example: p /q ⩵ 4 /11,  D ⩵ 33, (x1, y1) ⩵ (23, 4)

23 + 4 33 
2
⩵ 232 + 2 × 4 × 23 33 + 16 × 33 ⩵ 1057 + 184 33 ⇒ x2 ⩵ 1057, y2 ⩵ 184

Verify that this is also a solution to the Pell equation.

In[$]:= 10572 - 33 × 1842

Out[$]= 1

Convert back to r, b.

u ⩵ p x ⩵ 4 × 1057 ⩵ 4228, v ⩵ p y ⩵ 4 × 184 ⩵ 736

t ⩵
u - p

q - 2 p
⩵

4228 - 4

11 - 2 × 4
⩵

4224

3
⩵ 1408

r ⩵
t - v

2
⩵ 336, b ⩵

t + v

2
⩵ 1072

Infinite number of solutions
Example shows smallest solution of Pell equation does not necessarily give admissible (r, b) solution.

However, it can be proved that if (x1, y1) is the smallest nontrivial solution of the Pell equation, then the 
solution given by
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However, it can be proved that if (x1, y1) is the smallest nontrivial solution of the Pell equation, then the 
solution given by

x1 + y1 D 
2 n, n > 0

always yields an admissible (r, b) solution.

Hence the number of solutions to our problem is always infinite for D > 0 and non-square.

Recurrence starting from trivial solutions
The Pell recurrence can be unwound algebraically to work directly on r, b.

It can then be applied to the trivial solutions (0, 0), (0, 1), and (1, 0) to generate solutions. 

Starting from (0, 0) gives the Pell solution series.  Starting from (0, 1) or (1, 0) gives neighbors related 
via the recycling recurrence.

We’re not done yet!
We have a method that always finds solutions to the hyperbolic, non-square D case.

However, it misses some solutions.  Example: p /q ⩵ 20 /41.  Solving the Pell equation yields

r b
17280 23680

Additional solutions found using the recurrence are only larger.  Yet the following are solutions:

r b
16 25
85 120
120 168
552 760

Note that the first is not related to another via the recycling recurrence.  The next two are a doublet, 
not a triplet.
The Pell equation method can only yield solutions that are members of a triplet related by the recycling 
recurrence.
This is rooted in the fact that its solutions are the same as found by applying the Pell recurrence to the 
trivial solutions, which are three in number.

It can be shown that if p is a prime greater than 2, then the method based on the Pell equation is in fact 
complete.  But for composite p, there can be additional solutions.

Finding all solutions
Hua (1982) gives a method that finds all solutions to Equation (4).

u2 - D v2 ⩵ f (4, repeated)

If 4f5 < D , then if it has a solution, the solution will be found among the convergents of D , similarly 
to solving the Pell equation, but with the difference that the solution is not the last convergent in the 
cycle.  One has to search the convergents for solutions, and there may be more than one in the first 
cycle.
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If 4f5 < D , then if it has a solution, the solution will be found among the convergents of D , similarly 
to solving the Pell equation, but with the difference that the solution is not the last convergent in the 
cycle.  One has to search the convergents for solutions, and there may be more than one in the first 
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If this inequality is not satisfied, then we proceed as follows.

Hua, Luogeng (Loo Keng) (1982).  Introduction to Number Theory, translated from the Chinese by Peter Shiu. Springer-Verlag.  
Chapter 11.

Method of solution
The method requires seeking integers l, h satisfying

l2 ⩵ D + f h

which can be solved by searching.  It suffices to search using the range -hmax < h < hmax where

hmax ⩵ Max
f

4
,

D

f

Since f ≥ D  it is guaranteed that hmax < 4f5.  Thus the RHS is always reduced. Then solve

u2 - D v2 ⩵ h

If 4h5 < D  solve directly using continued fractions; otherwise repeat recursively.  Once one has a 
solution

x2 - D y2 ⩵ h

then solutions to u2 - D v2 ⩵ f  are given by

u ⩵
D y ± l x

h
, v ⩵

x ± l y

h

One more important element is needed to ensure completeness.   The continued fraction method only 
yields solutions in which gcd(u, v) ⩵ 1.  If gcd(u, v) ⩵ g > 1, then g2 must divide f ⩵ p2, i.e. g must divide 
p.  To find those solutions, then, one can divide Equation (4) by each of the divisors of  p.  Thus, for each 
g that is a divisor of p, solve

u

g

2

- D
v

g

2

⩵
p

g

2

Then multiply the solution by g to obtain (non coprime) u, v satisfying Equation (4).

This method finds all solutions.
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