Chapter 0 Homework

- **1.** [5 points] For each of the following, indicate whether f = O(g), $f = \Omega(g)$, or $f = \Theta(g)$). (Only one response per question: if the correct answer is Θ , don't write " O, Ω, Θ ".)
- (a) f(n) = 2n 5, g(n) = 14n + 17.
- (b) $f(n) = n^2 + 3n + 2$, $g(n) = 14n \log n$.
- (c) $f(n) = n^{100}$, $g(n) = 0.001^n$.
- (d) $f(n) = n^{1.0001}$, $g(n) = n \log n$.
- (e) $f(n) = 2^n$, g(n) = n!.
- **2.** [10 points] Let *k* be a positive integer and let

$$S_n = \sum_{i=1}^n j^k = 1^k + 2^k + \dots + n^k$$
 for any positive integer n .

Show that $S_n = \Theta(n^{k+1})$.

Hints:

- 1. The proof does *not* use induction.
- 2. For the upper bound, note that $j \le n$ within the sum.
- 3. For the lower bound, look at the sum of the biggest n/2 elements, and note that $j \ge n/2$ within the sum.
- **3.** [10 points] Let $\phi = \frac{1}{2}(1 + \sqrt{5})$, which is roughly 1.618. Show that for the *n*th Fibonacci number F_n , we have $F_n = \Theta(\phi^n)$.

Hints:

- 1. Note that $x = \phi$ is the positive solution of the polynomial equation $x^2 x 1 = 0$. (The other solution is $x = \frac{1}{2}(1 \sqrt{5}) \doteq -0.618$, for what it's worth.)
- 2. Since this is a Θ -result:
 - You only need to show it for large enough n.
 - You need to show an upper bound (a O-result) and a lower bound (a Ω -result). Their proofs are similar.
- 3. Use the second principle of mathematical induction.