CISC 5200: Computer Language Theory Chapter 4 Decidability

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences

Spring, 2020

1/284 2 / 284

difficulty) of a problem:

Limitations of algorithmic solvability

of algorithms.

► Why study unsolvability?

▶ In this chapter, we investigate the problem-solving power

▶ Maybe a weaker version of the problem *is* solvable.

First step in studying *complexity* (inherent computational

Some problems can be solved algorithmically; some

If a particular problem is unsolvable:

1. Is it algorithmically solvable? 2. Is it efficiently algorithmically solvable?

Searching for an algorithm is futile.

▶ Gain a perspective on the limits of computation.

Decidable languages

- ▶ We start with problems that are decidable.
- ▶ We look at some problems involving
 - 1. regular languages, and
 - 2. context-free languages.

Section 4.1: Decidable Languages

3 / 284 4/284

Decidable problems for regular languages

- ▶ We give algorithms for testing ...
 - whether a FA accepts a string (ADFA),
 - whether an NFA accepts a string (A_{NFA}) ,
 - ▶ whether a regular expression accepts a string (A_{RFX}),
 - \triangleright whether the language of a FA is empty (E_{DFA}),
 - whether two FA are equivalent (EQ_{DFA}).
- Represent these problems by languages, rather than FA.
 - Example: $A_{DFA} = \{ \langle B, w \rangle : B \text{ is a DFA that accepts string } w \}.$
 - ▶ The problem of testing whether a DFA B accepts an input w is the same as testing whether $\langle B, w \rangle \in A_{DFA}$.
 - Showing that the language A_{DFA} is decidable is the same thing as showing that the computational problem is decidable.

Does a DFA accept a given string?

Theorem

The language

 $A_{DFA} = \{ \langle B, w \rangle : B \text{ is a DFA that accepts string } w \}$

is decidable.

Proof idea.

Present a TM M that decides A_{DFA} .

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- 1. Simulate *B* on input *w*.
- If the simulation ends in an accept state, then ACCEPT, else REJECT."

5/284 6/284

Does a DFA accept a given string? (cont'd)

Proof idea (cont'd).

Background for actual proof:

- Book's description too simple—leads to wrong understanding.
- ► The TM *M* cannot "be" the DFA *B*.

 If it could, then things would be simple. Both would have essentially the same transition functions (TM just needs to move right over *w* as each symbol is read.)
- ▶ For DFA B, must take string $\langle B \rangle$ (encoding B's five components) as input, and then simulate B on string w.
 - ▶ This means the algorithm for simulating any DFA must be embodied in the TM 's state transitions.
 - Think about this. Given a current state and input symbol, scan the tape for the encoded transition function, and then use that info to determine new state.

Does a DFA accept a given string? (cont'd)

Proof idea (cont'd).

- Note that the TM must be able to simulate any such DFA, and not just this particular DFA.
- ► Keep track of current state and position in w by writing on the tape.
- Must describe how a TM simulates a DFA.
- ▶ Initially, current state is *q*₀ and current position is leftmost symbol in *w*.
- The states and position are updated using the transition function δ.
 - The TM M's δ is not the same as the DFA B's δ .
- When M finishes processing, ACCEPT if in an accept state and REJECT otherwise.
- ► From the details of the implementation, it is clear that the processing always finishes in a finite number of steps.

 □

7/284 8/284

Does an NFA accept a given string?

Theorem

The language

$$A_{NFA} = \{ \langle B, w \rangle : B \text{ is a NFA that accepts string } w \}$$

is decidable.

Proof idea.

Since we have proven that DFAs are decidable, only need to convert the NFA to a DFA.

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA *B* to an equivalent DFA *C*, using the subset construction of Theorem 1.39.
- 2. Run TM M on input $\langle C, w \rangle$, using the theorem we proved earlier.
- 3. If *M* accepts, then ACCEPT, else REJECT."

9 / 284

Does a regular expression generate a given string?

Theorem

The language

 $A_{REX} = \{\langle R, w \rangle : R \text{ is a regular expression generating string } w\}$

is decidable.

Proof.

Let P = "On input $\langle R, w \rangle$, where R is a reg exp and w a string:

- 1. Convert *R* to an equivalent NFA *A* as in Chapter 1.
- 2. Run TM *N* (from proof in previous slide) on the input $\langle A, w \rangle$.
- 3. If N accepts, then ACCEPT, otherwise REJECT. "

10 / 284

Does a DFA accepts any string at all?

Theorem

The language

$$E_{DFA} = \{ \langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \}$$

is decidable.

Proof.

- Proof idea: A DFA accepts some string iff it is possible to reach the accept state from the start state. How can we check this?
- We can use a marking algorithm similar to the one used in Chapter 3.

Does a DFA accepts any string at all? (cont'd)

Theorem

The language E_{DFA} is decidable.

Proof.

- Marking algorithm:
- T = "On input $\langle A \rangle$, where A is a DFA:
 - 1. Mark the start state of A.
 - Repeat until no new states get marked:
 Mark any state that has a transition coming into it from any previously-marked state.
 - 3. If no accept state is marked, then ACCEPT; otherwise, REJECT."

This proof is clearer than most of the previous ones, since its pseudocode is detailed enough to easily allow implementation.

11/284 12/284

Are two DFAs equivalent?

Theorem

The language

$$EQ_{DFA} = \{ \langle A, B \rangle : A, B \text{ are DFAs and } L(A) = L(B) \}$$

is decidable.

Proof.

Construct a new DFA *C* from *A* and *B*, where *C* accepts only those strings accepted by either *A* or *B*, but not both. If *A* and *B* accept the same language, then *C* will accept nothing; use previous construction to check the latter.

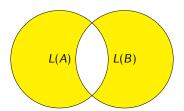
F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA *C* (more on this in a minute ...).
- 2. Run TM T (from proof on last side) on input $\langle C \rangle$.
- 3. If *T* accepts, then ACCEPT; if *T* rejects, then REJECT."

13 / 284

Are two DFAs equivalent? (cont'd)

$$L(C) = L(A) \triangle L(B) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(L(B) \cap \overline{L(A)}\right).$$



- We used proofs by construction to show that regular languages are closed under union, intersection, and complement.
- ▶ We can use those constructions to construct a FA that accepts *L*(*C*).

14/284

Does a given CFG generate a given string?

Theorem

The language

$$A_{CFG} = \{\langle G, w \rangle : G \text{ is a CFG and } w \in L(G)\}$$

is decidable.

Proof.

For a CFG G and a string w, we want to determine whether G generates w.

- ightharpoonup One idea: Use G to go through all derivations.
- This won't work: it yields a TM that's a recognizer, not a decider. That is, it could infinite loop on rules such as A → xA.
- ▶ Helpful fact: If G is in Chomsky normal form, then a string of length n will have a derivation using 2n-1 steps.

Interlude: Chomsky normal form implies compact derivations

Notation: $X \stackrel{*}{\Rightarrow} w$ means that $w \in \Sigma^*$ has a leftmost derivation from $X \in V$.

Lemma

Let $G = (V, \Sigma, R, S)$ be a CFG in Chomsky normal form. Let $w \in \Sigma^*$ be nonempty and let $X \in V$. Then any leftmost derivation $X \stackrel{*}{\Rightarrow} w$ has exactly 2|w| - 1 steps.

Proof.

By induction on |w|.

Basis step: Let |w| = 1. Then w = c for some $c \in \Sigma$. Since G is in Chomsky normal form, the only possible derivation $X \stackrel{*}{\Rightarrow} c$ must be $X \to c$, which has 1 step.

15/284 16/284

Interlude: Chomsky normal form implies compact derivations (cont'd)

Proof (cont'd).

Induction step: Let k>1 and suppose true for all w with |w|< k; we must show true when |w|=k. Let |w|=k. First step in derivation $X\stackrel{*}{\Rightarrow} w$ must be $X\to AB$ for some $A,B\in V$. There exist nonempty $x,y\in \Sigma^*$ such that $A\stackrel{*}{\Rightarrow} x$ and $B\stackrel{*}{\Rightarrow} y$ within the derivation $X\stackrel{*}{\Rightarrow} w$. Note that w=xy, and so |x|+|y|=k. Since |x|>0 and |y|>0, we have 0<|x|<|x|+|y|=k and so $A\stackrel{*}{\Rightarrow} x$ in 2|x|-1 steps. Similarly, $B\stackrel{*}{\Rightarrow} y$ in 2|y|-1 steps. Since $X\stackrel{*}{\Rightarrow} w$ involves the step $X\to AB$ along with the derivations $A\stackrel{*}{\Rightarrow} x$ and $B\stackrel{*}{\Rightarrow} y$, we do $X\stackrel{*}{\Rightarrow} w$ in

$$1 + (2|x| - 1) + 2(|y| - 1) = 2(|x| + |y|) + 1 - 2 = 2k - 1$$

steps.

17 / 284

Does a given CFG generate a given string? (cont'd)

Theorem

The language A_{CFG} is decidable.

Proof (cont'd).

- ► For a CFG *G* and a string *w*, we want to determine whether *G* generates *w*.
 - 1. Convert *G* to Chomsky normal form.
 - 2. Let n = |w|.
 - 3. List all derivations using 2n-1 steps. If any generates w, then ACCEPT, else REJECT.
- Very inefficient!
 - ▶ The number of k-step derivations is exponential in k.
 - So this algorithm runs in time exponential in *k*.

Can we do better? Yes! Using dynamic programming, can run in time $O(n^3)$, see Chapter 7.

18 / 284

Does a CFG generate any string at all?

Theorem

The language

$$E_{CFG} = \{\langle G \rangle : G \text{ is a CFG and } L(G) = \emptyset\}$$

is decidable.

How can you do this?

- Brute force approach? Try all possible strings.
 - ▶ Won't work; the number of strings unbounded.
 - This would yield a TM that's a recognizer, rather than a decider.
- Instead, think of this as a graph problem, where you want to know whether you can reach a string of terminals from the start state.
 - Do you think it is easier to work forwards or backwards?
 - Backwards:
 Want to know whether start variable can generate a string of terminals.

Does a CFG generate any string at all? (cont'd)

Theorem

The language E_{CFG} is decidable.

Proof.

- Mark all the terminal symbols.
- Keep working backwards so that if the RHS of any rule has only marked items, then mark the LHS.
 For example, if X → YZ with Y and Z being marked, then
- mark X.Do previous step until nothing new is marked.
- ► If you have marked *S*, then done and REJECT; otherwise, ACCEPT.

19/284 20/284

EQ_{CFG} is not a decidable language

- Earlier, we showed that EQ_{DFA} is decidable.
- This proof used the fact that DFAs are closed under union, intersection, and complementation.
- We can't adapt this proof to show that EQ_{CFG} is decidable, since CFLs aren't closed under complements and intersection.
- ► As it turns out, EQ_{CFG} is *not* decidable.
- ▶ Undecidability proofs are covered in Chapter 5.

Every CFL is decidable

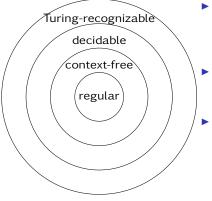
- A few slides back, we showed that any CFG is decidable. We haven't done this yet for a CFL.
- ▶ But since we already know that CFGs define CFLs, this is not an issue. Thus we can ignore PDAs, since it's most likely easier to prove with a CFG than with a PDA.
- Proof: Let G be a CFG for a CFL A. We design a TM M_G that decides A. It uses the fact that A_{CFG} is decidable; we'll let S denote the deciding TM for A_{CFG}.

 M_G ="On input w:

- 1. Run TM S on input $\langle G, w \rangle$.
- 2. If S accepts, then ACCEPT; if S rejects, then REJECT."
- ► This leads us to the following picture of the language hierarchy.

21/284 22/284

Hierarchy of classes of languages



- We can convert an FA into a CFG, and so regular⇒contextfree.
- We just proved that every CFL language is decidable.
- ▶ By definition (Chapter 3), decidable⇒Turingrecognizable. Reverse implication?

Section 4.2: The Halting Problem

23/284 24/284

The Halting Problem

- One of the most philosophically important theorems in the theory of computation.
- "There is a specific problem that is algorithmically unsolvable."
- In fact, ordinary/practical problems may be unsolvable.
- **Example:** Software verification. Would like to come up with an algorithm that solves the following problem:
 - Given a computer program and a precise specification of what the program is supposed to do, the algorithm is to determine whether the program works as specified.
 - ► This cannot be done!
- Our first undecidable problem: does an arbitrary TM accept a given input string?

The Halting Problem (cont'd)

- ightharpoonup $A_{TM} = \{\langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w\}.$
- ► A_{TM} is undecidable.
- ▶ The culprit? *M* can loop on *w*.
- If we could determine that it M loops forever, then could reject. Hence A_{TM} is often called the halting problem. As we will show, it is impossible to determine whether an arbitrary TM will always halt (i.e., on every possible input).
- ▶ Note that this problem is Turing recognizable: simply simulate *M* on input *w*; if *M* accepts, then we ACCEPT; if it ever rejects, then we REJECT.
- We start by describing our proof technique: the diagonalization method.

25/284 26/284

Diagonalization method

- ▶ In 1873, mathematician Georg Cantor was concerned with the problem of measuring the sizes of infinite sets.
- How can we tell whether one infinite set is bigger than the other, or whether they have the same size? What does this even mean?
 - We cannot use the counting method that we'd use for finite sets, because we'd never finish. (Example: How many even integers are there?)
 - Which is larger: the set of all even integers or the set of all finite strings over {0,1}? (Note: the latter is equivalent to the set of all integers.)
- ► Cantor observed that two finite sets have the same size if there's a one-to-one correspondence between the two sets.
- Cantor's idea: extend this idea to infinite sets.

Review of function properties

- From basic discrete math (e.g., CS1100).
- ▶ Let $f: A \rightarrow B$.
 - *f* is *injective* or *one-to-one* if *f* never maps two distinct elements in *A* to the same element in *B*, i.e., if

$$x, y \in A \land x \neq y \Rightarrow f(x) \neq f(y)$$

or

$$x, y \in A \land f(x) = f(y) \Rightarrow x = y.$$

Examples: The "add-two" function $g: \mathcal{Z} \to \mathcal{Z}$ defined by

$$g(x) = x + 2 \quad \forall x \in \mathcal{Z}$$

is injective, but the absolute value function $h \colon \mathcal{Z} \to \mathcal{Z}$ defined by

$$h(x) = |x| \quad \forall x \in \mathcal{Z}$$

is not injective.

27 / 284 28/284

Review of function properties (cont'd)

- ▶ Recalling that $f: A \rightarrow B ...$
 - The f is surjective if every item in B can be expressed as f applied to some element in A, i.e., i.e., if

$$b \in B \Rightarrow b = f(a)$$
 for some $a \in A$.

(We also say f maps A onto B.)

Examples: The add-two function given above is surjective.

But the modified add-two function $\tilde{g} \colon \mathcal{N} \to \mathcal{N}$

$$\tilde{g}(x) = x + 2 \quad \forall x \in \mathcal{N}$$

is not surjective. (There's no $x \in \mathcal{N}$ such that $\tilde{g}(x) = 1$.)

If *f* is both injective and surjective, it is said to be *bijective* or a (one-to-one) correspondence.

(In other words, it's a pairing of the two sets A and B.)

29 / 284

An example of pairing set items

- ▶ Let $\mathcal{N} = \{1, 2, 3, ...\}$ and $\mathcal{E} = \{2, 4, 6, ...\}$ be the natural numbers and the even natural numbers.
- ▶ Then $|\mathcal{N}| = |\mathcal{E}|$.
- ▶ Why? The function $f: \mathcal{N} \to \mathcal{E}$, defined as

$$f(x) = 2x \quad \forall x \in \mathcal{N},$$

is a bijection (one-to-one correspondence, pairing) of the two sets \mathcal{N} and \mathcal{E} .

- ▶ Somewhat counterintuitive, since $\mathcal{E} \subseteq \mathcal{N}$.
- ▶ **Definition:** A set is *countable* if it is finite *or* if it has the same size as \mathcal{N} . (Latter case is often said to be *countably* infinite or enumerable.)
- \triangleright So, \mathcal{E} is countable (actually, countably infinite).

30 / 284

Example: Rational numbers

Let

$$Q = \left\{ \frac{m}{n} : m, n \in \mathcal{N} \right\},\,$$

the set of positive rational numbers.

- $\triangleright \mathcal{Q}$ seems much larger than \mathcal{N} .
- ▶ As we shall see, there is a one-to-one correspondence between \mathcal{N} and \mathcal{Q} . Hence, $|\mathcal{Q}| = |\mathcal{N}|$.
- ► This correspondence must
 - list all the elements of Q,
 - label them (the first with 1, then second with 2, etc.), and
 - ightharpoonup make sure that each element in Q is counted exactly once.

Correspondence between \mathcal{N} and \mathcal{Q}

To get our listing, we make an infinite matrix containing all the positive rational numbers.

1 2 1 3 1 4 1 5	1 2 2 2 3 2 4 2 5 2	13 23 33 43 53	14 24 34 44 54	15 25 35 45 55	
:	:	:	:	:	٠.

- ▶ Bad way to list: row by row. Since first row is infinite, would never get to second row!
- Instead, access via the diagonals, but not listing rationals that are equivalent to previously-listed rationals.
- ► So, the order is $\frac{1}{1}$, $\frac{2}{1}$, $\frac{1}{2}$, $\frac{3}{1}$, $\frac{1}{3}$,... (note how we skipped $\frac{2}{2}$, since $\frac{2}{3} = \frac{1}{1}$).

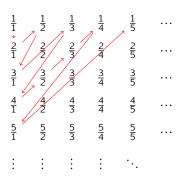
31 / 284 32 / 284

Correspondence between \mathcal{N} and \mathcal{Q} (cont'd)

▶ This yields a correspondence between \mathcal{N} and \mathcal{Q} . This correspondence function $f \colon \mathcal{N} \to \mathcal{Q}$ is given by the table

n	1	2	3	4	5	
f(n)	1/1	<u>2</u>	<u>1</u>	<u>3</u>	<u>1</u>	

and may be visualized via the picture



33 / 284

Theorem: \mathcal{R} is uncountable

- R is the set of *real numbers*, i.e., numbers with a decimal representation, possibly having an infinite number of digits after the decimal point. For example:
 - **▶** 2 = 2.0
 - $2\frac{3}{5} = 2.6$
 - $\frac{1}{7} = 0.142857142857142857142857...$
 - $\sqrt{2} = 1.414213562373095048801688...$
 - π = 3.141592653589793238462643...
 - e = 2.718281828459045235360287...
- ▶ Will show that \mathcal{R} is *uncountable*, i.e., there can be no pairing of elements between \mathcal{R} and \mathcal{N} .
- ▶ Proof by contradiction: Given any proposed pairing, we can always find some $x \in \mathcal{R}$ that does not appear in the pairing.

284 34/284

Finding a new value *x*

Consider the example mapping:

n	f(n)
1	3.14159
2	55.5555
3	0.12345
4	0.50000
:	<u>:</u>

- Assume that it is complete.
- We now describe a method that is guaranteed to generate a value x not in the (supposedly complete) infinite list of \mathcal{R} .

Finding a new value x (cont'd)

- Generate $x \in [0,1]$ as follows:
 - ▶ To guarantee that $x \neq f(1)$, pick a digit not equal to the first digit after the decimal point. Any value other than 1 will work; let's choose 4. Number so far is 0.4.
 - ▶ To guarantee that $x \neq f(2)$, pick a digit not equal to the second digit after the decimal point. Any value other than 5 will work; let's choose 6. Number so far is 0.46.
 - ▶ To guarantee that $x \neq f(3)$, pick a digit not equal to the third digit after the decimal point. Any value other than 3 will work; let's choose 4. Number so far is 0.464.
 - Continue, choosing values along the "diagonal" of digits. That is, the nth digit of x is chosen as something different than the nth digit of f(n).

Note: We take care to never choose 0 or 9.

▶ When done, we are guaranteed to have a value *x* not already in the list, since it differs in at least one position with every other number in the list.

35/284 36/284

Proof that R is uncountable

- ▶ In fact, the unit interval $[0,1] = \{x \in \mathcal{R} : 0 \le x \le 1\}$ is uncountable.
- ▶ Proof by contradiction: Suppose that [0,1] is countable.
- Let $r_1, r_2, r_3,...$ be an enumeration of [0,1].
- ▶ Write the decimal expansions of these numbers as

$$r_n = 0.r_{n,1}r_{n,2}r_{n,3}... \quad \forall n \in \mathcal{N}$$

Now define $x = 0.x_1x_2x_3...$, where

$$x_n = \begin{cases} r_{n,n} + 1 & \text{if } r_{n,n} \neq 8 \text{ and } r_{n,n} \neq 9, \\ 5 & \text{if } r_{n,n} = 8 \text{ or } r_{n,n} = 9 \end{cases}$$

- ► Then x cannot be any of the r_n , since the nth digits of x and r_n differ.
- Contradiction!

37 / 284

Implications

- \blacktriangleright We have just proved that $\mathcal R$ is uncountable.
- Important application in the theory of computation.
- ► It implies that non-decidable (in fact, non-Turing-recognizable) languages exist. The reason? There are uncountably many languages, yet only countably many Turing Machines. (This needs proof.)
- Since each TM can only recognize a single language and there are more languages that TMs, some languages are not recognized by any TM.
- ► Corollary: Some (actually, "most") languages are not Turing-recognizable.

38 / 284

Proof that some languages are not Turing-recognizable

- The set Σ^* of strings over Σ is countable. Why? Form a listing of Σ^* by listing all strings of length 0, followed by all strings of length 1, followed by all strings of length 2, etc.
- ► The set of all Turing Machines is countable. Why?
 - **Each** TM *M* has an encoding $\langle M \rangle$ into a string.
 - If we simply omit all strings that do not represent valid TMs, we get a list of all TMs.

Proof that some languages are not Turing-recognizable (cont'd)

- ▶ The set \mathcal{L} of all languages over Σ is uncountable. Why?
 - ▶ The set \mathcal{B} of all binary sequences is uncountable. (Use the same diagonalization proof as for \mathcal{R} .)
 - \blacktriangleright \mathcal{L} is uncountable because it has a correspondence with \mathcal{B} .
 - Let Σ^* = { $s_1, s_2, s_3,...$ }.
 - ▶ If $A \in \mathcal{L}$, its characteristic sequence $\chi_A = (x_1, x_2, x_3, ...)$ is defined by taking

$$x_i = \begin{cases} 0 & \text{if } s_i \notin A \\ 1 & \text{if } s_i \in A \end{cases} \quad \forall \in \mathcal{N}$$

▶ The function $f: \mathcal{L} \to \mathcal{B}$ given by

$$f(A) = \chi_A \quad \forall A \in \mathcal{L}$$

is a bijection.

- Since \mathcal{B} is uncountable and there is a bijection between \mathcal{B} and \mathcal{L} , we see that \mathcal{L} is uncountable.
- Since L is uncountable and the set of TMs is countable, there exists some language to which no TM corresponds.

39/284 40/284

The Halting Problem is undecidable

- ▶ We shall prove that the Halting Problem is undecidable.
 - ► We started this a while ago
 - Let $A_{TM} = \{ \langle M, w \rangle : M \text{ is a TM and accepts } w \}.$
- Proof technique:
 - Assume A_{TM} is decidable and obtain a contradiction.

41 / 284

► A diagonalization proof.

42/284

The diagonalization proof

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$		
M_1	ACC	REJ	ACC	REJ		ACC		
M_2	ACC	<u>ACC</u>	ACC	ACC		ACC		
M_3	REJ	REJ	REJ	REJ		REJ		
M_4	REJ ACC	ACC	REJ	REJ		ACC		
÷	:	÷	÷	÷	٠	:	÷	
D	REJ	REJ	ACC	ACC		?		

Proof: The Halting Problem is undecidable

- ► Assume A_{TM} is decidable.
- \blacktriangleright Let H be a decider for A_{TM} .
 - ▶ Input $\langle M, w \rangle$, where M is a TM and w is a string.
 - If M accepts w, then H halts and accepts; otherwise, H halts and rejects.
- ► Construct a TM *D* using *H* as a a subroutine.
 - D calls H to determine what M does when the input string is its own description ⟨M⟩.
 - D then outputs the *opposite* of H's answer.
 - ▶ In summary: $D(\langle M \rangle)$ accepts if M does not accept $\langle M \rangle$, and rejects if M accepts $\langle M \rangle$.
- ▶ Now run *D* on its own description:
 - ▶ $D(\langle D \rangle)$ accepts if D does not accept $\langle D \rangle$.
 - ▶ $D(\langle D \rangle)$ rejects if D accepts $\langle D \rangle$.
 - ▶ A contradiction!! So *H* cannot be a decider for A_{TM}.

Slightly more concrete version

► Suppose that one can write a C++ function

bool halts(Function p, InputSet x);

that takes as parameters:

- any C++ function p, and
- any input x for p.

and whose return value is

- true if p halts on x, and
- ► false if p does not halt on x.
- Consider the C++ function

void foo(Function x) { while halts(x, x);}

- ▶ Does foo(foo) halt?
 - foo(foo) halts \implies foo(foo) does not halt.
 - foo(foo) does not halt \implies foo(foo) halts.
 - ▶ foo(foo) halts foo(foo) does not halt ... Contradiction!
- ► Thus we have proven that you cannot write a program to determine if an arbitrary program will or will not halt after a finite number of steps.

43/284 44/284

What does this mean?

Recall what was said earlier:

- ▶ The halting problem is not some contrived problem.
- The halting problem asks whether we can tell if some TM M will accept an input string.
- We are asking whether the language

$$A_{TM} = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$$

is decidable.

- ► The language A_{TM} is *not* decidable!
 - ▶ Both *M* and *w* are input variables.
 - Halting of some algorithms (e.g., sorting algorithms) is decidable.
- A_{TM} is Turing-recognizable (we covered this earlier): simulate the TM M on w; if it accepts/rejects, then we accept/reject.
- ► The halting problem is special: it gets at the heart of the matter.

45 / 284

Co-Turing recognizable

A language is *co-Turing recognizable* if it is the complement of a Turing-recognizable language.

Theorem

A language is decidable iff it is both Turing-recognizable and co-Turing recognizable.

- Why? To be Turing-recognizable, we must accept in finite time. If we don't accept, we may reject or loop (in which case it is not decidable.)
- ▶ We can invert any "question" by taking the complement. This flips the ACCEPT and REJECT answers. Thus if we invert the question for a Turing-recognizable language, then we would get the answer to the original REJECT question in finite time.

46 / 284

Theorem

A language is decidable iff it is both Turing-recognizable and co-Turing recognizable.

Proof.

Forward direction is easy: If A is decidable, then both A and \overline{A} are Turing-recognizable. Backward direction?

- Assume A and \overline{A} are Turing recognizable, with M_1 and M_2 recognizing A and \overline{A} .
- ▶ Define M = "On input w:
 - 1. Run both M_1 and M_2 on input w in parallel.
 - 2. If M_1 accepts, then ACCEPT; if M_2 accepts, then REJECT."
- Every string is in either A or \overline{A} , so every string w must be accepted by either M_1 or M_2 . Because M halts whenever M_1 or M_2 accepts, M always halts and so is a decider.
- Furthermore, M accepts A and rejects \overline{A} . So M is a decider for A, and hence A is decidable.

Implications

- ▶ Corollary: For any undecidable language A, either A or its complement \overline{A} is not Turing-recognizable.
- ► Corollary: $\overline{A_{TM}}$ is not Turing-recognizable.
- Proof: We know that A_{TM} is Turing-recognizable, but not decidable.
- If $\overline{A_{TM}}$ were also Turing-recognizable, then A_{TM} would be Turing-decidable, which it is not.
- ► Thus $\overline{A_{TM}}$ is not Turing-recognizable.

47/284 48/284