CISC 1400 Discrete Structures

Chapter 3 Logic

Arthur G. Werschulz

Fordham University Department of Computer and Information Sciences Copyright © Arthur G. Werschulz, 2019. All rights reserved.

Summer, 2019

Logical (or illogical?) reasoning

- ls this a valid argument?
 - All men are mortal.
 - Socrates is a man.
 - ► Therefore, Socrates is mortal.

Valid or not? Yes!

- Is this a valid argument?
 - If we finish our homework, then we will go out for ice cream.
 - ▶ We are going out for ice cream.
 - ▶ Therefore we finished our homework.

Valid or not? No!

► How to recognize the difference?

1/1

Outline

- Propositional logic
 - Logical operations
 - Propositional forms
 - ► From English to propositions
 - Propositional equivalence
- ► Predicate logic
 - Quantifiers
 - Some rules for using predicates

Propositional logic

Proposition: A statement that is either true or false:

- \triangleright 2 + 2 = 4.
- \triangleright 2 + 2 = 5.
- lt rained yesterday in Manhattan.
- ▶ It will rain tomorrow in Manhattan.

These are *not* propositions:

- x + 2 = 4.
- ▶ Will it rain today in Manhattan?
- Colorless green ideas sleep furiously.

3/1 4/1

Propositional logic (cont'd)

- Truth value of a proposition (T, F)
- Propositional variables: lower case letters (p, q, ...)(Analogous to variables in algebra.)
 - p="A New York City subway fare is \$2.50."
 - ightharpoonup q="It will rain today in Manhattan."
 - r="All multiples of four are even numbers."

Logical operations: negation

- ► Negation, the NOT operation: reverses a truth value.
- Negation is a *unary operation*: only depends on one variable.
- \triangleright Negation of p is denoted p'. (Some books use other notations, such as \overline{p} , $\sim p$, or $\neg p$.)
- Can display via a truth table

5/1 6/1

Logical operations: conjunction, disjunction

- ▶ The remaining operations we discuss are *binary* operations: they depend on two variables (also called connectives).
- ► Conjunction, the AND operation: true if both operands are true. Denote by \wedge .
- Disjunction, the (inclusive) or operation: true if either operand is true (including both). Denote by \vee .
- ► Truth tables:

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

Logical operations: exclusive or

- ▶ The inclusive or ∨ is not the "or" of common language.
- ▶ That role is played by exclusive or (xor), denoted \oplus .
- ► Truth table:

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

► Be careful to distinguish between or and xor!

7/1 8/1

Logical operations: conditional

- ▶ Denoted $p \Rightarrow q$.
- ► Captures the meaning of
 - ightharpoonup If p, then q.
 - \triangleright p implies q.
 - p only if q.
 - p is sufficient for q.
 - ightharpoonup q is necessary for p.
- ► Truth table:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- First two rows are "obvious".
- Last two rows are not so obvious:
 "One can derive anything from a false hypothesis."

Logical operations: biconditional

- ▶ Denoted $p \Leftrightarrow q$
- Captures the meaning of
 - \triangleright p if and only if q.
 - \triangleright p is necessary and sufficient for q.
 - \triangleright p is logically equivalent to q.
- ► Truth table:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

9/1 10/1

Propositional Forms

In arithmetic and algebra, you learned how to build up complicated arithmetic expressions, such as

- ► 1 + 2
- -(1+2)
- ▶ 3×4
- $-(1+2)/(3\times4)$
- $-(1+2)/(3\times4)+(5+6\times7)/(8+9)-10$

Propositional Forms (cont'd)

- ► Use connectives to build complicated expressions from simpler ones, *or*
- break down complicated expressions as being simpler subexpressions, connected by connectives.
- **Example:** $-(1+2)/(3\times4)+(5+6\times7)/(8+9)-10$ consists of

$$-(1+2)/(3\times4)$$
 and $(5+6\times7)/(8+9)-10$,

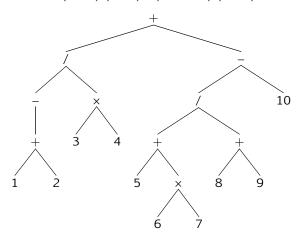
connected by +.

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.
- And so forth.

11/1 12/1

Propositional Forms (cont'd)

Systematize the process via a parse tree. Parse tree for $-(1+2)/(3\times4)+(5+6\times7)/(8+9)-10$:



13/1

Propositional Forms (cont'd)

We're inherently using the following rules:

- 1. Parenthesized subexpressions are evaluated first.
- 2. Operations have a precedence hierarchy:
 - 2.1 Unary operations (for example, -1) are done first.
 - 2.2 Multiplicative operations (x and /) are done next.
 - 2.3 Additive operations (+ and -) are done last.
- 3. In case of a tie (two additive operations or two multiplicative operations), the remaining operations are done from left to right.

These guarantee that (e.g.) $2 + 3 \times 4$ is 14, rather than 20.

14/1

Propositional Forms (cont'd)

- Now jump from numerical algebra to propositional algebra.
- We can build new (complicated) propositions out of old (simpler) ones.
- ► Example: $[(p \lor q) \land ((p') \lor r)] \Rightarrow [(p \Leftrightarrow q) \lor (p \land r)]$ consists of

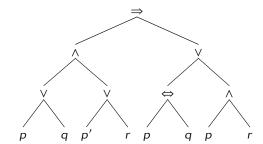
$$(p \lor q) \land ((p') \lor r)$$
 and $(p \Leftrightarrow q) \lor (p \land r)$,

connected by \Rightarrow .

- Now break down these two subexpressions.
- Now break down the four sub-subexpressions.
- And so forth.

Propositional Forms (cont'd)

Parse tree for $[(p \lor q) \land ((p') \lor r)] \Rightarrow [(p \Leftrightarrow q) \lor (p \land r)]$:



15/1 16/1

Propositional Forms (cont'd)

► The expression

$$[(p \lor q) \land ((p') \lor r)] \Rightarrow [(p \Leftrightarrow q) \lor (p \land r)]$$

is completely parenthesized (and hard to read).

- If we agree upon (standard) precedence rules, can get rid of extraneous parentheses.
 - 1. Parenthesized subexpressions are evaluated first.
 - 2. Operations have a precedence hierarchy:
 - 2.1 Unary negations (') are done first.
 - 2.2 Multiplicative operations (\wedge) are done next.
 - 2.3 Additive operations (\lor, \oplus) are done next.
 - 2.4 The conditional-type operations (\Rightarrow and \Leftrightarrow) are done last.
 - 3. In case of a tie (two operations at the same level in the hierarchy), operations are done in a left-to-right order, except for the conditional operator \Rightarrow , which is done in a right-to-left order. That is, $p \Rightarrow q \Rightarrow r$ is interpreted as $p \Rightarrow (q \Rightarrow r)$.

Propositional Forms (cont'd)

So can replace

$$[(p \lor q) \land ((p') \lor r)] \Rightarrow [(p \Leftrightarrow q) \lor (p \land r)]$$

by

$$[(p \lor q) \land (p' \lor r)] \Rightarrow [(p \Leftrightarrow q) \lor p \land r]$$

or even

$$(p \lor q) \land (p' \lor r) \Rightarrow (p \Leftrightarrow q) \lor p \land r.$$

17/1 18/1

Propositional Forms (cont'd)

- Precedence rules are too hard to remember!
- Let's simplify!
 - 1. Parenthesized subexpressions come first.
 - 2. Next comes the only unary operation (').
 - 3. Next comes the only multiplicative operation (\wedge).
 - 4. Next comes the additive operations (\lor, \oplus) .
 - Use parentheses if you have any doubt.
 Always use parentheses if you have multiple conditionals.
 - 6. Evaluate ties left-to-right.

From English to Propositions

- Can use propositional forms to capture logical arguments in English.
- Help to expose logical fallacies.
- Example: Alice will have coffee or Bob will go to the beach. Let

a = "Alice will have coffee"

b = "Bob will go to the beach"

Solution? $a \lor b$.

 Example: If I make peanut butter sandwiches for lunch, then Carol will be disappointed. Let

p ="I will make peanut butter sandwiches"

c = "Carol will be disappointed"

Solution? $p \Rightarrow c$.

19/1 20/1

From English to Propositions (cont'd)

► Example: If Alice will have coffee and Bob will go to the beach, then either Carol will be disappointed or I will make peanut butter sandwiches.

Solution? $a \land b \Rightarrow c \lor p$

Example:

Alice will have coffee and Bob will not go to the beach

if and only if

Carol will be disappointed and I will not make peanut butter sandwiches.

Solution? $(a \land b') \Leftrightarrow (c \land p')$

Propositional Equivalence

High school algebra: establishes many useful rules, such as

$$a+b=b+a,$$

$$a\times(b+c)=a\times b+a\times c,$$

$$-(a+b)=(-a)+(-b),$$

Anything analogous for propositions?

- ► How to state them? (No equal sign.)
- ► How to prove correct rules?
- ► How to disprove incorrect "rules"?

21/1

Propositional Equivalence (cont'd)

- ► Logical equivalence: $p \equiv q$ means p is true if and only if q is true
- ► Beware!
 - $p \equiv q$ is *not* a proposition; it's a statement *about* propositions.
 - $p \equiv q$ is a statement in a metalanguage about propositions.
 - ightharpoonup \equiv is a metasymbol in this language.
- Analogous to

$$a+b=b+a,$$

$$a\times(b+c)=a\times b+a\times c,$$

$$-(a+b)=(-a)+(-b),$$

we might conjecture that

$$p \lor q \equiv q \lor p,$$

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r),$$

$$(p \lor q)' \equiv p' \lor q'.$$

Propositional Equivalence (cont'd)

▶ Want to prove (or disprove) conjectured identities such as

$$p \lor q \equiv q \lor p,$$

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r),$$

$$(p \lor q)' \equiv p' \lor q'.$$

- ► How? Use a truth table.
- Suppose that p and q are propositional formulas. The equivalence $p \equiv q$ is true iff the truth tables for p and q are identical.

23/1 24/1

Propositional Equivalence (cont'd)

Example: Is it true that $p \lor q \equiv q \lor p$?

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

р	q	q∨p
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

They match! So $p \lor q \equiv q \lor p$.

More compact form:

р	q	p∨q	$q \lor p$
Т	Т	T	Т
Т	F	T	Т
F	Т	T	Т
F	F	F	F

Propositional Equivalence (cont'd)

Example: Is it true that $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$?

р	q	r	q∨r	$p \wedge (q \vee r)$	p∧q	p∧r	$(p \land q) \lor (p \land r)$
Τ	Т	Т	Т	T	Т	Т	Т
Τ	Т	F	Т	T	T	F	T
Τ	F	T	Т	Т	F	Т	T
Τ	F	F	F	F	F	F	F
F	Т	T	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	T	Т	F	F	F	F
F	F	F	F	F	F	F	F

So
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
.

25/1 26/1

Propositional Equivalence (cont'd)

- ► How to organize the table?
 - ► Two variables: TT, TF, FT, FF
 - ► Three variables: TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF.
 - General pattern?
 - ► Rightmost variable alternates: TFTFTFTF...
 - ► Next alternates in pairs: TTFFTTFF ...
 - ▶ Next alternates in quadruples: TTTTFFFFTTTTFFFF ...
- ► Size of table?
 - ► Two variables? 4 rows.
 - ► Three variables? 8 rows.
 - ightharpoonup n variables? 2^n rows.
 - ► Since $2^{10} = 1024$, you don't want to do a 10-variable table.

Propositional Equivalence (cont'd)

Example: Is it true that $(p \lor q)' \equiv p' \lor q'$?

р	q	p∨q	$(p \lor q)'$	p'	q'	$p' \lor q'$
Т	Т	Т	F	F	F	F
Т	F	T	F	F	Т	Т
F	Т	T	F	Т	F	Т
F	F	F	T	Т	Т	Т

So it is *not* true that $(p \lor q)' \equiv p' \lor q'!$

27/1 28/1

Propositional Equivalence (cont'd)

Example: Rather than $(p \lor q)' \equiv p' \lor q'$, the correct formula is $(p \lor q)' \equiv p' \land q'$

р	q	p∨q	$(p \lor q)'$	p'	q'	$p' \wedge q'$
Т	Т	T	F	F	F	F
Т	F	T	F	F	Т	F
F	Т	T	F	Т	F	F
F	F	F	Т	Т	Т	Т

The formula $(p \land q)' \equiv p' \lor q'$ is also correct.

These formulas

$$(p \lor q)' \equiv p' \land q'$$

 $(p \land q)' \equiv p' \lor q'$

are called deMorgan's laws.

29/1

Propositional Equivalence (cont'd)

Some well-known propositional laws (we haven't proved them all):

Double Negation	$(p')' \equiv p$
Idempotent	$p \wedge p \equiv p$
Idempotent	$p \lor p \equiv p$
Commutative	$p \land q \equiv q \land p$
Commutative	$p \lor q \equiv q \lor p$
Associative	$(p \land q) \land r \equiv p \land (q \land r)$
Associative	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
DeMorgan	$(p \land q)' \equiv (p') \lor (q')$
DeMorgan	$(p \lor q)' \equiv (p') \land (q')$
Modus Ponens	$[(p \Rightarrow q) \land p] \Rightarrow q$
Modus Tollens	$[(p \Rightarrow q) \land q'] \Rightarrow p'$
Contrapositive	$(p \Rightarrow q) \equiv (q' \Rightarrow p')$
Implication	$(p \Rightarrow q) \equiv (p' \lor q)$

30 / 1

Propositional Equivalence (cont'd)

The preceding table is similar to the table of set identities from Chapter 1, e.g., we have

$$(p \wedge q)' \equiv p' \vee q'$$
 and $(A \cap B)' = A' \cup B'$.

It turns out that we can use a propositional law to easily prove the analogous set identity.

Example: Show that $(A \cap B)' = A' \cup B'$.

Solution: Must show that any element of $(A \cap B)'$ is an element of $A' \cup B'$, and vice versa. But

$$x \in (A \cap B)' \iff (x \in A \cap B)' \iff (x \in A \land x \in B)'$$

$$\iff (x \in A)' \lor (x \in B)'$$

$$\iff (x \in A') \lor (x \in B')$$

$$\iff x \in A' \cup B'.$$

as required.

Propositional Equivalence (cont'd)

Once we've proved a given propositional law, we can use it to help prove new ones.

Example: Let's prove the exportation identity

$$[(p \land q) \Rightarrow r] \equiv [p \Rightarrow (q \Rightarrow r)].$$

We have

$$(p \land q) \Rightarrow r \equiv (p \land q)' \lor r$$
 implication
 $\equiv (p' \lor q') \lor r$ DeMorgan
 $\equiv p' \lor (q' \lor r)$ associative
 $\equiv p' \lor (q \Rightarrow r)$ implication
 $\equiv p \Rightarrow (q \Rightarrow r)$ implication

as required.

31/1 32/1

Propositional Equivalence (cont'd)

- ▶ **Duality:** If p is a proposition that only uses the operations ', \land , and \lor . If we replace all instances of \land , \lor , T , and F in p by \lor , \land , F , and T , respectively, we get a new proposition p^* , which is called the *dual* of p.
- **Example:** The duals of

$$p \wedge (q \vee r)$$
 and $(p \wedge q) \vee (p \wedge r)$

are

$$p \lor (q \land r)$$
 and $(p \lor q) \land (p \lor r)$.

▶ **Duality Principle:** If two propositions (which only use the operations ', ∧, and ∨) are equivalent, then their duals are equivalent. (Be lazy—save half the work!)

Propositional Equivalence (cont'd)

Example: Since the duals

$$p \wedge (q \vee r)$$
 and $(p \wedge q) \vee (p \wedge r)$

are

$$p \lor (q \land r)$$
 and $(p \lor q) \land (p \lor r)$

and we had earlier proved that

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r),$$

we now know that

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$$

"for free".

33/1 34/1

Propositional Equivalence (cont'd)

Example: Since the duals of

$$(p \lor q)'$$
 and $p' \land q'$

are

$$(p \wedge q)'$$
 and $p' \vee q'$

and we had earlier proved that

$$(p \vee q)' \equiv p' \wedge q',$$

we now know that

$$(p \wedge q)' \equiv p' \vee q'$$

"for free".

Indirect Proofs

Sometimes you can prove a statement with a direct approach.

Example: Show that the square of an odd number is also an odd number.

Solution: Let m be an odd number; want to show that m^2 is odd.

- ▶ Write m = 2n + 1 for $n \in \mathbb{Z}$.
- ► Then

$$m^2 = (2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1.$$

Let
$$k = 2n^2 + 2n \in \mathbb{Z}$$
. Then $m^2 = 2k + 1$, and so m^2 is odd.

35/1 36/1

Indirect Proofs (cont'd)

Sometimes a "frontal attack" doesn't work. So we use an "sneak attack", more properly called an *indirect proof*. Two such techniques:

- ▶ *Proof by contradiction.* Show that if the statement to proved is false, then a contradiction results.
- ▶ Proving the contrapositive. Rather than directly proving an implication $p \Rightarrow q$, prove its contrapositive $q' \Rightarrow p'$.

37 / 1

Indirect Proofs (cont'd)

Example: Show that if the square of an integer is even, then that integer is even.

Solution: Let $m \in \mathbb{Z}$. We want to show that

 m^2 is even $\Rightarrow m$ is even.

We can do this by establishing its contrapositive. But the contrapositive is

 $m \text{ is odd} \Rightarrow m^2 \text{ is odd.}$

which we did previously. So we're done!!

38/1

Indirect Proofs (cont'd)

Example: Show that $\sqrt{2}$ is an irrational number.

Solution: Let's do a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, let's assume that $\sqrt{2} \in \mathbb{Q}$, and show how this leads to a contradiction.

So write $\sqrt{2} = p/q$ for $p, q \in \mathbb{Z}^+$, where $q \neq 0$ and where p and q have no common factor other than 1 (i.e., the fraction p/q is "reduced to lowest terms"). Then

$$\sqrt{2} = \frac{p}{q} \Rightarrow \frac{p^2}{q^2} = 2 \Rightarrow p^2 = 2q^2 \Rightarrow p^2 \text{ is even}$$

$$\Rightarrow p \text{ is even (see previous slide)}$$

$$\Rightarrow p = 2r \text{ for some positive integer } r$$

$$\Rightarrow (2r)^2 = p^2 = 2q^2 \qquad \text{(Remember that } p^2 = 2q^2!\text{)}$$

$$\Rightarrow 4r^2 = 2q^2 \Rightarrow 2r^2 = q^2 \Rightarrow q^2 \text{ is even}$$

$$\Rightarrow q \text{ is even (again using previous slide)}$$

Indirect Proofs (cont'd)

Example (cont'd): Show that $\sqrt{2}$ is an irrational number.

Solution (cont'd): We're doing a proof by contradiction. Rather than showing $\sqrt{2} \notin \mathbb{Q}$, we are trying to show how the assumption $\sqrt{2} \in \mathbb{Q}$ leads to a contradiction.

We wrote $\sqrt{2} = p/q$ for $p, q \in \mathbb{Z}^+$, where $q \neq 0$ and where p and q have no common factor other than 1 (i.e., the fraction p/q is "reduced to lowest terms").

Previous slide: Both p and q are even, i.e., they are both exact integer multiples of 2.

This contradicts the assumption that p, q have no common factor (other than 1)!

Hence we cannot write $\sqrt{2} = p/q$ for $p, q \in \mathbb{Z}^+$, where $q \neq 0$ and where p and q have no common factor other than 1. Hence $\sqrt{2} \notin \mathbb{Q}$.

An Example From Lewis Caroll

Given the following facts:

- 1. All babies are illogical.
- 2. Nobody is despised who can manage a crocodile.
- 3. Illogical persons are despised.

Prove that babies cannot manage crocodiles.

Let b, c, d, and l denote the status of being a baby, being able to manage a crocodile, being despised, and being logical. Then

41 / 1

- 1. $b \Rightarrow l'$.
- 2. $c \Rightarrow d'$.
- 3. $l' \Rightarrow d$.

We now have

- \triangleright b \Rightarrow d, using (1), (3), transitive law.
- ▶ $(d')' \Rightarrow c'$, using (2), contrapositive law.
- ▶ $d \Rightarrow c'$, since $(d')' \equiv d$ (double negation law).
- ▶ Hence transitive law gives $b \Rightarrow c'$.

See text for a 10-fact example.

Predicate Logic

Want to symbolically state the classical syllogism

- ► All men are mortal.
- Socrates is a man.
- ► Therefore, Socrates is mortal.

Let

$$man(x) = "x \text{ is a man"}$$

 $mortal(x) = "x \text{ is mortal"}$

We can agree that man(Socrates) is (was?) true and that

$$man(x) \Rightarrow mortal(x)$$
 for any person x.

Our natural conclusion? mortal(Socrates) is true.

42 / 1

Predicate Logic (cont'd)

- ▶ A *predicate* is a formula that contains a variable, that becomes a proposition when we substitute a particular value for the variable.
- ► In other words, plug in a value and get a truth value (T or F).
- ightharpoonup Examples: man(x) or mortal(x).
- Can have more than one variable, e.g.,

older
$$(x, y) = "x$$
 is older than $y"$.

Predicate Logic (cont'd)

For example, suppose that four(t) means that $t \in \mathbb{Z}$ is divisible by 4 (in other words, t is an exact multiple of 4). Then:

X	four(x)	truth value of four(x)
:	:	:
-4	-4 is divisible by 4	Т
-3	-3 is divisible by 4	F
-2	-2 is divisible by 4	F
-1	-1 is divisible by 4	F
0	0 is divisible by 4	Т
1	1 is divisible by 4	F
2	2 is divisible by 4	F
3	3 is divisible by 4	F
4	4 is divisible by 4	Т
÷	:	:

43/1 44/1

Quantifiers

- ► How to transform a predicate p(x) (where x varies over a set S) into a proposition?
- ▶ Universal quantification: We ask that p(x) be true for all $x \in S$. We let

$$\forall x \in S, p(x)$$

denote the proposition "For all elements $x \in S$, p(x) is true."

► Existential quantification: We ask that p(x) be true for some $x \in S$. We let

$$\exists x \in S : p(x)$$

denote the proposition "There exists some $x \in S$ such that p(x) is true."

► Note the slight punctuation difference (comma vs. colon).

Quantifiers (cont'd)

▶ Let

four(
$$x$$
) = " x is divisible by four." for any $x \in \mathbb{Z}$.

- $\forall x \in \mathbb{Z}$, four(x) is false.
- $ightharpoonup \exists x \in \mathbb{Z}$: four(x) is true.
- ► Consider the predicate x > y over $x, y \in \mathbb{Z}$.
 - ▶ $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x > y$ is false
 - $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z} : x > y \text{ is true}$

46 / 1

Some Rules for Using Predicates

- ► Classical syllogism: Suppose that
 - p(x) and q(x) are predicates, with x varying over some set S.
 - ▶ $p(x) \Rightarrow q(x)$ for any $x \in S$.

Suppose further that p(a) is true for some $a \in S$.

Then q(a) is true.

We can write this symbolically as

$$[\forall x \in S, p(x) \Rightarrow q(x) \land a \in S \land p(a)] \Rightarrow q(a)].$$

► Negation laws:

$$[\exists x \in S : p(x)]' \equiv [\forall x \in S, p'(x)]$$

and

$$[\forall x \in S, p(x)]' \equiv [\exists x \in S : p'(x)].$$

Predicates Having More Than One Variable

- Any given variable might not be quantified.
- ► The quantified variables might be quantified differently.
- ► Example: Let *P* be a set of people, *T* be a set of temperatures. Define "beach(*p*, *t*)" to mean that "person *p* will go to the beach if the temperature reaches *t* degrees".

Quantification choices?

- \triangleright No quantification. beach(p, t) is a two-variable predicate.
- We can quantify in one variable.
 Quantifying over p gives the following predicates in t:

 $\exists p \in P$: beach(p, t) $\forall p \in P$, beach(p, t).

Quantifying over t gives the following predicates in p:

 $\exists t \in T$: beach(p,t) $\forall t \in T$, beach(p,t).

45/1

Predicates Having More Than One Variable (cont'd)

- Quantification example (cont'd)
 - ▶ We can quantify in both variables, getting the propositions:

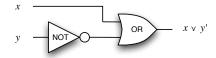
 $\exists p \in P : [\exists t \in T : beach(p, t)]$ $\exists p \in P : [\forall t \in T, beach(p, t)]$ $\forall p \in P, [\exists t \in T : beach(p, t)]$ $\forall p \in P, [\forall t \in T, beach(p, t)].$

(Many people would omit the brackets.)

49 / 1

Example: Build a circuit that computes $x \lor y'$.

Solution:



Logic Circuits

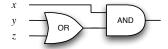
- ▶ Computers are built from a small list of basic components.
- ► Technology changes rapidly.
- ► So don't want to describe hardware in terms of the basic components.
- Instead, use logic gates to build logic circuits.
- Absence or presence of electrical signal signifies "false" or "true".
- ► Since $\{', \land, \lor\}$ is universal set of Boolean operations, it suffices to use logic gates for same:

$$x \longrightarrow \text{NOT} \longrightarrow x' \qquad x \longrightarrow \text{AND} \longrightarrow x \land y$$

$$y$$
 OR $x \lor y$

50/1

Example: Find the Boolean expression computed by



Solution: This circuit computes $x \land (y \lor z)$.

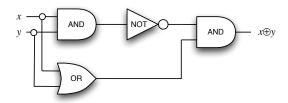
51/1 52/1

Example: How would we build an xor circuit?

Solution: From Exercise 3.3.12, we have

$$x \oplus y \equiv (x \wedge y)' \wedge (x \vee y).$$

So the desired logic circuit is given by



Example (cont'd): Since

$$p = b \lor f \lor s$$
 and $a = f \lor s$,

the logic circuit is given by

$$f$$
 OR OR a

55/1

Example: A building is protected by a fire alarm, a smoke alarm, and a burglar alarm. This alarm system is controlled by three inputs:

- ▶ The signal *b* coming from the burglar alarm.
- ▶ The signal *f* coming from the fire alarm.
- ▶ The signal s coming from the smoke alarm.

There will be two outputs:

- ► a signal telling us to call the fire department, which we'll denote by *a*, and
- ► a signal telling us to call the police department, which we'll denote by *p*.

Solution: Thinking about this a bit, it should be clear that

$$p = b \lor f \lor s$$
 and $a = f \lor s$.

53/1 54/1